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In this paper we present an algorithm for yield estimation and optimization consisting of Hessian-based optimization
methods, an adaptive Monte Carlo (MC) strategy, polynomial surrogates, and several error indicators. Yield estimation
is used to quantify the impact of uncertainty in a manufacturing process. Since computational efficiency is one main
issue in uncertainty quantification, we propose a hybrid method, where a large part of a MC sample is evaluated with
a surrogate model, and only a small subset of the sample is reevaluated with a high-fidelity finite element model. In
order to determine this critical fraction of the sample, an adjoint error indicator is used for both the surrogate error and
the finite element error. For yield optimization we propose an adaptive Newton-MC method. We reduce computational
effort and control the MC error by adaptively increasing the sample size. The proposed method minimizes the impact
of uncertainty by optimizing the yield. It allows one to control the finite element error, surrogate error, and MC error.
At the same time it is much more efficient than standard MC approaches combined with standard Newton algorithms.

KEY WORDS: adaptivity, failure probability, Monte Carlo, polynomial surrogates, stochastic optimiza-
tion, stochastic sparse grid collocation, uncertainty quantification, yield analysis

1. INTRODUCTION

There are many applications where uncertainty quantification and optimization under uncertainty is important. Un-
certainty in the manufacturing process may lead to deviations in the design parameters, i.e., geometrical or material
parameters, which may lead in turn to rejections due to malfunctioning. In this context, malfunctioning means that
pre-defined performance feature specifications are not fulfilled. In order to quantify the impact of uncertainty we
define the yield according to [1] as the percentage of functioning realizations in a manufacturing process. Thus, yield
is mathematically equivalent to the concept of reliability and the relation between yield and failure probability is
given in the formyield = 1 – failure probability. The topic of yield optimization is motivated by high-frequency
electromagnetics and circuit design.

In general, it is not possible to carry out yield calculations exactly. Hence, many algorithms have been introduced
to this end and the Monte Carlo (MC) method is probably the most popular one [2]. The main challenge of yield
estimation is its high computational cost, since it requires numerous evaluations of the underlying model. In prac-
tice, these models are often given by partial differential equations (PDE) of high complexity and can only be solved
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NOMENCLATURE

Ap,r general system matrix
A?

p,r Hermitian transpose ofAp,r

Aω system matrix of waveguide model
a waveguide width
b waveguide height
c upper bound to define the performance

feature specifications
D computational domain
E′ test functions
Eω electric field phasor
Einc

ω incident wave phasor (excitation)
Eω,h finite element approximation ofEω

E0 amplitude of incident wave
ETE

10 fundamental transverse electric mode
eω vector of degrees of freedom
eω,j degree of freedom
ey unit vector iny-direction
eff computational effort for yield estimation

or optimization
err error of the yield estimator compared

to the reference solution
f frequency
fr general discrete right-hand side
fω discrete right-hand side of waveguide model
gr forcing term
H(curl, D) complex function space of square integrable

functions with square integrable curl
h mesh size for FEM
inc incremental factor for the adaptive Newton

method
j imaginary unit
K stiffness matrix
kz10 propagation constant
Lp,r parametric differential operator
L?

p,r adjoint operator ofLp,r

L2(D) complex function space of square integrable
functions onD

L∞(D) complex function space of essentially
bounded functions onD

Mε mass matrix
Mport system-matrix contribution stemming from

port boundary conditions
Nj second order, first kind Ńed́elec basis

functions
Nh number of degrees of freedom
NMC size of the Monte Carlo sample

N start
MC initial size of the MC sample for adaptive

yield optimization
Nnew

MC updated size of the MC sample in
adaptive yield optimization

Nold
MC old size of the MC sample in adaptive

yield optimization
Np number of uncertain input parameters
NSC number of interpolation nodes
NΩs number of accepted sample points
n outer unit normal vector
p vector of uncertain input parameters(

p = [p1, ..., pnp ]
)

pi realization of the input parameter
vectorp

p(i) interpolation nodes
pj uncertain input parameter
p1, p2 length of the inlay, length of the offset of

the waveguide
p3, ..., p12 material parameters of the waveguide
p mean value of the uncertain input

parameter vectorp
p0 mean value of the starting point for yield

optimization
pe mean value of the considered point for

yield estimation
pΩs

mean value of the accepted sample points
p̂Ωs

MC approximation of the mean value of
the accepted sample points

pdf probability density function
Q quantity of interest
Qh finite element approximation of quantity

of interest
q parameter for angular condition in

Newton method
(qr, ·)D general linear functional defining the

quantity of interest
(qr, ·)Cnh general discrete linear functional defining

the discrete quantity of interest
(qω, ·)Cnh discrete linear functional of the

waveguide model
r range parameter
rj range parameter point
S scattering parameter of the fundamental

transverse electric mode onΓP1

Sh finite element approximation ofS
s safety factor
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NOMENCLATURE (continued)

sk search direction in thek-th step of the
Newton method

Tr range to define the performance feature
specifications

Td discretized range to define the performance
feature specifications

ur solution of the model problem
ur discrete primal solution
V function space defined in Eq. (20)
Vh finite-dimensional subspace ofV
w weight function
Y yield
YMC MC estimator of the yield
YRef reference value of the yield for numerical

tests
∇pYDQ gradient of the yield according to differential

quotient
∇pYG analytical gradient of the yield according

to Eq. (12)
zr general discrete dual solution
zω discrete dual solution of waveguide model

Greek Symbols
αi coefficients for stochastic collocation
β parameter for Armijo rule in Newton method
ΓP1,ΓP2 waveguide ports
ΓPEC waveguide walls
γ parameter for Armijo step size in Newton

method
δ step size for differential quotient
εfe finite element error
εsc stochastic collocation error

ε0, εr vacuum and relative permittivity
µ0,µr vacuum and relative permeability
Ξ image space of uncertain parameters of

waveguide model
πt, πT tangential trace operators
Σ covariance matrix of the uncertain input

parameter vectorp
ΣΩs covariance matrix of the accepted sample points
Σ̂Ωs MC approximation of the covariance matrix

of the accepted sample points
σk step size in thek-th step of the Newton method
σY standard deviation of the yield estimator
σY,max upper bound for the standard deviation of the

yield estimator
τ relaxation time
Φi global polynomial basis functions
ϕ1, ϕ2 parameters for angular condition in Newton

method
ω angular frequency
Ω1, Ω3 domain of the vacuum of the waveguide
Ω2 domain of the dielectrical inlay of the

waveguide
Ωs safe domain

Other Symbols
X̃ stochastic collocation approximation of a

functionX
I1

ε trusted interval (with estimated FE and SC
error)

I2
ε trusted interval (with FE error)

#HFh number of high-fidelity (FE) evaluations with
grid refinementh

numerically, with the finite element method (FEM), for instance. Since each high-fidelity evaluation with FEM itself
may be computationally challenging, a standard MC analysis becomes rapidly prohibitive due to limits of computa-
tional and/or time resources. In this paper we present a hybrid approach for yield estimation combining the efficiency
of stochastic collocation (SC) with the accuracy of MC for probability estimation. We then present an algorithm for
yield maximization, based on a globalized Newton method.

The classical MC approach consists in sampling the original high-fidelity model, i.e., the highly resolved random
finite element (FE) model. The efficiency of this approach is independent of the number of uncertain parameters and
the method does not suffer from the “curse of dimensionality.” Still, the sample size required for accurate estimation
can be quite large [3]. There is a lot of research on reducing the computational effort of failure probability or yield
estimation. The common goal is to reduce the number of high-fidelity evaluations. There are sampling-free methods
such as the first-order reliability method (FORM) or the second-order reliability method (SORM). These methods
determine the most probable point, which is the closest point from the parameter domain origin to the separating
surface between the failure region and the safe region, and employ approximations of the limit state function around
this point [4,5]. Investigations in the context of sampling have led to a sample size reduction, e.g., through importance
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sampling [6] or subset simulation [7,8]. Alternatively or complementarily, the computational effort has been reduced
for each sample point, e.g., with surrogate based approaches. In these surrogate methods an approximation (surro-
gate/response surface) of the original model is built using high-fidelity evaluations of a small training set, followed by
MC sampling of the surrogate model [9]. In order to build the surrogate different methods have been employed, e.g.,
linear regression [10], Gaussian process regression [11], or SC [12]. In [13] a combination of two surrogate models,
Gaussian process regression and SC is proposed. However, the accuracy of the surrogate depends on the size of the
training set and the number of uncertain parameters. For a large number of uncertain parameters, the computational
costs can exceed the costs for MC [14]. Furthermore, as shown in [15], there are examples where the surrogate model
is highly accurate, measured by classical norms or pointwise, but the yield estimator fails drastically. In [15] a hybrid
approach is proposed. Sample points which are close to the limit state function are evaluated based on the high-fidelity
model; for all remaining sample points the surrogate model is used. Here, the assessment of whether a point isclose
to the interface between failure and safe domain is crucial for the accuracy and the efficiency of the algorithm. To
this end, a method using an adjoint error indicator has been presented in [16]. Yield optimization has been carried out
in [1], where a Newton method for optimization was presented, which was combined with the standard MC method.

In this paper, we present an algorithm for efficient yield estimation and optimization. For yield estimation we
propose a hybrid approach similar to [15,16]. Contrary to the approach presented in [15] we use an adjoint error indi-
cator to identify the aforementioned critical MC sample points. Also, contrary to [16] we build a polynomial surrogate
model based on SC. Furthermore, we consider the FE error in addition to the surrogate error as a hybrid distinction
criterion. If required, we refine the FE model for a subset of sample points. We then integrate this hybrid approach
into the yield estimation and optimization framework. The optimization algorithm proposed in this paper is based on
a globalized Newton method reported in [17]. For yield estimation, which is necessary in each iteration, we use our
previously mentioned hybrid method, and during optimization we adaptively adjust the MC sample size. To the best
of our knowledge, these are new elements in the context of yield optimization and we call the resulting algorithm
adaptive Newton-MC. It achieves ana priori defined accuracy of the result and significantly reduces computational
effort. Furthermore, we show the applicability of the presented estimation and optimization approaches to problems
where the performance feature specifications are restrictions involving partial differential equations describing elec-
tromagnetic fields, i.e., Maxwell’s equations in frequency domain.

This paper is structured as follows. After setting up the problem in Section 2, in Section 3 we will focus on yield
estimation. We briefly review standard MC and SC. We then present the hybrid approach combining the two previous
ones. In Section 4 we propose the new adaptive Newton-MC method for yield optimization, including the numerical
algorithm. Numerical results for the application of electromagnetic field simulation are presented in Section 5 before
the paper is concluded in Section 6.

2. PROBLEM SETTING

In this paper we consider a PDE with uncertainty in the input data. Details on the differential operator, geometry and
boundary conditions will be postponed to the Section 5.1, which allows us to focus on the main algorithmic aspects
for yield estimation and optimization. The starting point is the parametric model problem

Lp,rur(p) = gr in D, (1)

whereLp,r is a linear parametric differential operator,gr is a forcing term,D ⊂ Rd is a simply connected bounded
domain,p ∈ RNp is the input parameter vector, andr is the range parameter. The range parameter may refer to
frequency or to a temperature, for instance, which are not affected by uncertainties. We assume that the problem is
well-posed for allp and thatp 7→ u(p) is a smooth function, which is often reasonable for parametrized differential
equations; see [18] for the case of elliptic problems and [19] for other problem classes, for instance. Design objectives
are frequently expressed through global quantities, which are modeled in our case as linear functionals of the solution.
More precisely, we introduce a quantity of interest (QOI) as

Q(p, r) := (qr, ur(p))D,

whereqr ∈ L2(D) andL2(D) denotes the space of complex square-integrable functions with inner product(·, ·)D.
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A FE approach leads to the linear parametric system

Ap,rur(p) = fr, (2)

whereAp,r ∈ CNh×Nh denotes the system matrix andNh the number of degrees of freedom. We denote withuh;r the
interpolated discrete FE solution, without explicitly introducing the underlying polynomial FE space. Furthermore,
we define the discrete linear QoI by

Qh(p, r) = (qr,ur)CNh , (3)

where(·, ·)CNh refers to the finite-dimensional inner product.
We assume that the uncertainties originate in the manufacturing process which lead to deviations in the design

parameters. These uncertainties are often classified as aleatory. The setting could be generalized by interpreting the
computed yield to be conditioned on epistemic uncertainties and by further quantifying these uncertainties as outlined,
for instance, in [20,21]. However, since the focus of the present work is on adaptivity and error control in the context
of yield estimation, this will not be considered here. The percentage of functioning realizations in mass production
is called the yield [1]. To give a mathematical definition, we modelp as a randomdesign parametervector, with
independent distributed elementspj , j = 1, ..., Np. Typically thepj are assumed to follow a normal distribution, i.e.,
pj ∼ N (pj , σj) with mean valuepj ∈ R and standard deviationσj ∈ R and probability density function

pdfN (pj ,σj)
=

1√
2πσ2

j

e−((pj−pj)
2/2σ2

j).

Then, the uncertain parameterp follows a multivariate normal distribution, i.e.,p ∼ N (p,Σ) with mean value
p ∈ RNp and a diagonal covariance matrixΣ ∈ RNp×Np and probability density function

pdfN (p,Σ) =
1(√

2π
)Np√

detΣ
e−(1/2)((p−p)TΣ−1(p−p)).

The normality assumption may be justified by the central limit theorem in the presence of averaging processes. Note
that, in order to simplify notation, we do not distinguish between a random vector and its realization, whenever there
is no confusion in a specific context. Following [1] we further define arange parameterr ∈ Tr = [r1, r2] and the
performance feature specification

Q(p, r) ≤ c ∀r ∈ Tr, (4)

wherec is a constant andQ the QoI introduced above. Note that, without loss of generality, we defined the perfor-
mance feature specification with an upper bound. For the sake of notation simplicity, we consider only one. This may
be read component-wise, as is usual in optimization. Thesafe domainΩs is the set of all parameters, which fulfill the
performance feature specifications, i.e.,

Ωs := {p : Q(p, r) ≤ c ∀r ∈ Tr}.
Then we can express the yield as

Y (p) := E[IΩs(p)] :=
∫ ∞

−∞
. . .

∫ ∞

−∞
IΩs(p) pdfN (p,Σ)(p) dp, (5)

whereE denotes the expected value andIΩs(p) the indicator function defined by

IΩs(p) =

{
1 p ∈ Ωs,

0 else.

Note thatp will be a design parameter during optimization, whereas the covariance is fixed, which is taken into
account by our notation in Eq. (5).
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3. YIELD ESTIMATION

We proceed by describing a numerical method for yield estimation. The starting point will be a brief description of the
MC method, followed by an outline of surrogate modeling based on SC. The section will conclude with a description
of a hybrid MC method.

3.1 Monte Carlo

The most straightforward approach in order to estimate the yield, i.e., compute the integrals of Eq. (5), is a MC
analysis [2,22]. In a MC approach, we consider a large number of independent random variables, distributed in the
same way asp. The set{pi}NMC

i=1 , where eachpi represents a realization of the corresponding random variable, is
called a sample andNMC represents the sample size. At each sample pointpi, we evaluate the high-fidelity FE model
and count the sample points, which fulfill our performance feature specifications. Then we obtain a yield estimator as

Y (p) ≈ YMC(p) :=
# sample points inΩs

sample size
,

or, equivalently,

YMC(p) =
1

NMC

NMC∑

i=1

IΩs(pi). (6)

MC estimation is based on the law of large numbers, which ensures convergence forNMC →∞ under mild regularity
assumptions on the integrand. Since in practice, the sample size is always finite, we need to estimate the associated
error. To this end, we use an error indicator from [3]. An estimator of the approximated yield variance is derived as
follows. Since all observations are independent, we obtain

V[YMC(p)] =
1

N2
MC

V

[
NMC∑

i=1

IΩs(pi)

]

=
1

N2
MC

NMC∑

i=1

V[IΩs(pi)]

=
1

N2
MC

NMCY (p)(1− Y (p))

=
Y (p)(1− Y (p))

NMC
,

where the expectation and variance are now defined with respect to the i.i.d. observations. Then, we derive the standard
deviation of the yield estimator as

σY =

√
Y (p)(1− Y (p))

NMC
≤ 0.5√

NMC
. (7)

The standard deviation depends on the size of the yield. Its maximum is attained for a yield of 50%, which yields the
upper bound for the standard deviation given in Eq. (7). Since the MC estimator is unbiased, the variance is equal
to the mean-square error. In view of Eq. (7), this approach guarantees a high accuracy for a large sample size, but it
converges slowly withO(

1/
√

NMC
)
. In many cases this is unaffordable due to the large number of expensive function

evaluations required [3].

3.2 Stochastic Collocation and Error Estimation

To reduce the computational complexity of sampling the underlying FE solver, surrogate models can be employed.
Based on the assumption that a mapX : RNp × Tr → C (whereX might refer to the QoIQh, for instance) is
well-defined and sufficiently smooth, we denote byX̃ the surrogate approximation defined by
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X̃(p, r) =
NSC∑

i=1

αi(r)Φi(p), (8)

whereNSC is the number of interpolation nodes,Φi : RNp → R are multivariate global polynomial basis functions
with respect top, andαi : Tr → C denotes the corresponding coefficients. Such a construction is appealing, as
spectral convergence with respect to the polynomial degree can be expected [23]. In this work, we compute such
approximations based on the SC method [18,24]. In particular, the surrogate model is obtained by evaluating (2) for
a set of multivariate interpolation nodes{p(i)}NSC−1

i=0 and enforcing the corresponding collocation conditions on the
surrogate model. The choice of the multivariate nodesp(i) is crucial for the efficiency of SC. To this end, we first
consider the tensor grid of univariate interpolation nodes{p(i)

1 }i × {p(i)
2 }i × . . . × {p(i)

M }i. Employing all points of
the grid is computationally intractable for many parameters. Sparse-grids [25] are a viable alternative, where a subset
of points, which do not significantly contribute to the approximation accuracy, is neglected. In this work, we use
an algorithm proposed in [26, Algorithm 2], which constructs the sparse-grid adaptively. For the convenience of the
reader, we recall the main ideas in the following.

The algorithm is based on weighted Leja nodes [27] which are defined recursively by an optimization problem;
i.e., univariate weighted Leja nodes{p(i)

m }i ⊂ R are obtained as

p(I)
m = arg max

pm∈R

√
w(pm)

I−1∏

i=0

|pm − p(i)
m |,

where the weight functionw(pm) is typically chosen as the probability density function of the corresponding input
parameter; i.e.,w(pm) = pdfN (pm,σm), and for the first node we setp

(0)
m = 0. Leja nodes are well suited for adaptive

approximations in higher dimensions, since they are, by construction, nested and allow for a granular refinement [27].
To steer the adaptive selection of the corresponding multivariate nodes, an adjoint error indicator [28,29] is employed.
To this end, we introduce the dual problem to Eq. (2), which is given by

A?
p,r zr(p) = qr,

whereA? denotes the Hermitian transpose ofA. In addition to the polynomial approximation of the QoIQ̃h, we
construct polynomial approximations of the mappingsu, z : RNp×Tr → C, where the same collocation points as for
the QoI are employed, cf. [30]. The resulting approximations are denoted asũ, z̃. We are then interested in the error,

εsc(p, r) =
∣∣∣Qh(p, r)− Q̃h(p, r)

∣∣∣
=

∣∣(qr,ur(p)
)
CNh

− (
qr, ũr(p)

)
CNh

∣∣
=

∣∣(zr(p),Ap,r ur(p)
)
CNh

− (
zr(p),Ap,r ũr(p)

)
CNh

∣∣
=

∣∣(zr(p), fr −Ap,r ũr(p)
)
CNh

∣∣. (9)

The evaluation of Eq. (9) would always require the computation ofz, i.e., the solution of the high-fidelity adjoint
problem. Hence, following [30], we employ the error indicator,

ε̃sc(p, r) :=
∣∣(z̃r(p), fr −Ap,r ũr(p)

)
CNh

∣∣. (10)

It should be noted that, under mild assumptions, cf. [26,28], the error ocurring whenz is replaced with̃z is of
higher-order. The error indicator is then used to select interpolation nodes which are admissible for refinement of the
approximations until a given computational budget is reached and the algorithm terminates. For further details on the
employed adaptive sparse-grid interpolation scheme, we refer to [26]. Once an accurate surrogate model is available,
it can then be used as an inexpensive substitute of Eq. (3) for an extensive MC analysis (6).

Adjoint techniques can further be used to estimate the FE error following [31,32]. However, in this case, the
continuous adjoint equation is required, which reads

L∗p,rzr(p) = qr in D,
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whereL∗p,r denotes the adjoint operator with respect to the inner product(·, ·)D. With this notation at hand, we derive
the following identity for the FE error:

εfe(p, r) = |(qr, ur(p)− uh;r(p))D|
=

∣∣(L∗p,rzr(p), ur(p)− uh;r(p))D

∣∣
= |(zr(p), Lp,r(ur(p)− uh;r(p)))D|
= |(zr(p), gr − Lp,ruh;r(p))D|.

A computable expression can only be obtained if the adjoint is replaced with a FE approximation. However, we
cannot simply employzh;r as it is orthogonal to the residual. Hence, a higher-order adjoint is required for the FE
error, contrary to the surrogate error (10). A discussion can be found in [28]. Hence, we approximate the adjoint
solution on a refined grid, but other options, such as higher polynomial degrees or recovery techniques [33], are
equally applicable.

Finally, an error identity comprising both SC and FE contribution is obtained as
∣∣∣Q(p, r)− Q̃h(p, r)

∣∣∣ ≤
∣∣∣Q(p, r)−Qh(p, r)

∣∣∣ +
∣∣∣Qh(p, r)− Q̃h(p, r)

∣∣∣
≈ ∣∣(zh/2;r(p), gr − Lp,ruh;r(p)

)
D

∣∣ +
∣∣(z̃r(p), fr −Ap,r ũr(p)

)
CNh

∣∣. (11)

The second term is immediately identified asε̃sc(p, r), which uses the surrogate approximationsz̃r(p) andũr(p),
and can therefore easily be evaluated for allp. However, the first term is identified as a computable approximation to
εfe(p, r), which we use, along with Eq. (8), to build the surrogate approximationε̃fe(p, r). The separation of the FE
error and the SC error by the triangle inequality is a rather conservative choice to define the total error. We come back
to this point at a later stage. We note, that the combined estimation of deterministic and stochastic discretization errors,
has, for example, also been considered in [29], in the context of the stochastic Galerkin method for time-dependent
forward and inverse problems.

3.3 Hybrid Approach

The number of collocation pointsN , for which the high-fidelity FE model needs to be solved, depends on the number
of uncertain parameters and the polynomial degree the surrogate model is supposed to have. This number grows
rapidly with the number of parameters (“curse of dimensionality”) [34]. For adaptive sparse grids the required FE
solver calls can be reduced significantly. However, we know from [15] that yield estimation may produce erroneous
results even though the surrogate model may be highly accurate.

The aim of the hybrid approach is to restore the accuracy of the MC method while relying on surrogate modeling
as much as possible to enhance the numerical efficiency. We propose a particular hybrid approach, which is an
extension of the one presented in [15]. The main difference lies in the selection of sample points which have to
be reevaluated with the high-fidelity model. These points are referred to as critical sample points in the following.
In [15] a tube around the boundary of the failure domain is defined, where the tube size is either fixed in advance,
or determined iteratively by an algorithm which adds critical samples points until some error bound is satisfied. In
comparison to [16] the method we propose is using SC with Leja nodes as a surrogate model (see Section 3.2). Also,
in addition to the surrogate model error (SC error), we also consider the FE error in order to determine the critical
sample points. Both error contributions are estimated by the adjoint error indicator, according to Eq. (11).

In the following we assume for simplicity of notation the QoI to be real valued. Our procedure is summarized
in Fig. 1. The first step is to build a surrogate model and to carry out a MC analysis with it. Then, we use an adjoint
error indicator to quantify both the FE and surrogate error as

ε̃sc(pi, rj) and ε̃fe(pi, rj) ∀i = 1, . . . , NMC, ∀j = 1, . . . , |Td|,
whereTd is a discrete subset ofTr. We then verify whether the approximated QoI value, taking into account the
aforementioned errors, meets the requirements. To this end, we define the interval

I1
ε(pi, rj) =

[
Q̃h(pi, rj)− s(ε̃sc(pi, rj) + ε̃fe(pi, rj)), Q̃h(pi, rj) + s(ε̃sc(pi, rj) + ε̃fe(pi, rj))

]
,
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FIG. 1: Scheme of the hybrid approach

wheres ≥ 1 indicates a safety factor. If the performance feature specifications are fulfilled (or not fulfilled) for the
whole intervalI1

ε, we can classify the sample pointpi as accepted (or not accepted). If the performance feature
specifications are fulfilled only for a subset of the intervalI1

ε, we classify the sample point as critical.
For all critical sample points the high-fidelity FE model will be evaluated; hence, we obtainQh(pi, rj). For these

points, the surrogate error is zero, however, the FE error remains unchanged. The new interval we have to examine is
given by

I2
ε(pi, rj) = [Qh(pi, rj)− s(0 + ε̃fe(pi, rj)), Qh(pi, rj) + s(0 + ε̃fe(pi, rj))].

Applying the same rules as above, the sample points are again classified either asacceptedor not accepted. If the
sample point is not identified as critical, we continue with the next sample point. Otherwise, we refine the mesh of the
FE model and reevaluateQh(pi, rj) and the FE errorεh

fe(pi, rj). We continue this procedure until the sample point
is not critical anymore or a maximal number of refinement steps is reached. In this manner we obtain an accuracy
comparable to the pure MC approach, using the finest refinement. The only difference would occur for sample points
whose errors were greatly underestimated with the adjoint error indicators and which were therefore wrongly accepted
or rejected instead of being classified as critical sample points. The decision process for one sample pointpi in one
range parameter pointrj is reported in Algorithm 1.

The following paragraph is dedicated to the choice of the safety factors. The FE error indicator̃εfe(pi, rj) and
the SC error indicator̃εsc(pi, rj) defined in Section 3.2 are not strict upper bounds. Therefore, we introduce the
safety factor. To determine the size of the safety factor, we generate a small random sample and evaluate it on the
surrogate model̃Qh(pi, rj) and on the original modelQh(pi, rj) (with the finest mesh examined). Next we consider
the maximum of the ratios of̃εfe(pi, rj) + ε̃sc(pi, rj) and|Qh(pi, rj) − Q̃h(pi, rj)| to derive the safety factor. As
with the computation of the total error (11), we choose the safety factor rather conservatively. This may result in
too many sample points being classified as critical, thus increasing the computational effort of the hybrid approach.
However, it avoids the misclassification of sample points and thus leads to a higher accuracy. Here, the safety factor
has been set tos = 2.

The performance feature specifications have to be fulfilled for allr ∈ Tr, or at least for all test range parameter
pointsrj ∈ Td. Thus, if one sample pointpi fulfills the requirements for a specific range parameter point, the test
needs to be carried out for the remaining range parameter points as well. However, ifpi fails to fulfill the requirements
for a single arbitrary range parameter point, it is immediately classified asnot accepted. Thereby, we can avoid the
computational effort of evaluating the remaining range parameter points. This strategy is also applied for the standard
MC method and the SC surrogate-based MC method. In the hybrid method we can further benefit from the fact that
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Algorithm 1: Hybrid decision
1: Input: sample pointpi, range parameter pointrj , safety factors
2: Evaluate surrogate model and set

Q = Q̃h(pi, rj)
ε = ε̃sc(pi, rj) + ε̃fe(pi, rj)

3: while max. refinement not reacheddo
4: if Q− s ε > c then
5: classifypi asnot accepted, i.e.,pi /∈ Ωs (middle picture in Fig. 1)

continue with next sample pointpi+1

6: else ifQ + s ε ≤ c then
7: sample pointpi accepted for this range parameter pointrj

8: if all rj checkedthen
9: classifypi asaccepted, i.e.,pi ∈ Ωs (left picture in Fig. 1)

continue with next sample pointpi+1

10: else
11: check next range parameter pointrj+1

12: end if
13: else
14: sample pointpi is critical
15: if first loopthen
16: Evaluate FE model and set

Q = Qh(pi, rj)
ε = ε̃fe(pi, rj)

17: else
18: Refine the mesh withh = h/2

Evaluate FE model and set
Q = Qh(pi, rj)
ε = ε̃h

fe(pi, rj)
19: end if
20: end if
21: end while
22: if sample pointpi still critical with last refinementthen
23: classifypi according toQ with the finest mesh intoacceptedor not accepted
24: end if

we know the SC results for the QoI. As the performance feature specification is defined as an upper bound, we assume
that for larger values of̃Qh(pi, rj) it is more likely thatQh(pi, rj) does not fulfill the requirements. Hence, we order
the range parameter points according toQ̃h(pi, rj) and start examining the range parameter point satisfying

arg max
rj∈Td

Q̃h(pi, rj).

In total, three different errors have to be considered within the yield estimation process: the MC error, the FE
error, and the error of the surrogate model, in our case the SC error. The hybrid approach proposed in this paper takes
into account the surrogate and FE error. The FE error depends on the refinement of the mesh. Instead of evaluating
the entire MC sample (or all critical sample points in a hybrid approach) with the finest mesh, we start with a coarse
mesh, calculate the error indicator and refine the mesh if necessary. Thereby, the FE error is controlled and reduced
if required and unnecessary computational effort avoided. The SC error is controlled by calculating an adjoint error
indicator after building the surrogate model. If the sum of both indicators is too large, a sample point may be classified
as critical. In this case, we evaluate the FE model and the associated SC error vanishes. In order to control the MC
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error, we define a target accuracy by a maximum value of the standard deviationσY and determine the minimum
sample size needed by Eq. (7).

4. YIELD OPTIMIZATION

4.1 General Newton Approach

The idea of yield optimization is to change the mean value of the uncertain parameter, i.e.,p, in order to maximize
the yield. We can formulate the optimization problem as follows:

max
p

Y (p) = max
p

∫ ∞

−∞
. . .

∫ ∞

−∞
IΩs(p) pdfN (p,Σ)(p) dp.

Let the uncertain parameterp be modeled as a normally distributed random variable. Then, since only the probability
density function of the uncertain parameterp depends on the optimization variablep, from Eq. (5) we can derive the
gradient and the Hessian of the yield according to [1]. To this end, we first introduce the mean and covariance ofp,
conditional to the eventp ∈ Ωs, given as

pΩs
= EpdfΩs

[p] =
∫ ∞

−∞
. . .

∫ ∞

−∞
p pdfΩs

(p) dp,

ΣΩs = EpdfΩs

[
(p− pΩs

) (p− pΩs
)T

]

=
∫ ∞

−∞
. . .

∫ ∞

−∞
(p− pΩs

) (p− pΩs
)T pdfΩs

(p) dp,

where

pdfΩs
(p) =

1
Y (p)

IΩs(p) pdfN (p,Σ)(p).

These conditional moments can be estimated by

p̂Ωs
=

1
NΩs

NMC∑

i=1

IΩs(pi) pi,

Σ̂Ωs =
1

NΩs − 1

NMC∑

i=1

IΩs(pi)
(
pi − p̂Ωs

) (pi − p̂Ωs

)T
,

wherepi, i = 1, ..., NMC are independent observations of the random variablep andNΩs indicates the number of
sample points within the safe domain. Using these formulations, the gradient and the Hessian of the yield with respect
to p can be written as

∇pY (p) =
∫ ∞

−∞
. . .

∫ ∞

−∞
IΩs(p)∇ppdfN (p,Σ)(p) dp = Y (p)Σ−1 (pΩs

− p) (12)

∇2
pY (p) =

∫ ∞

−∞
. . .

∫ ∞

−∞
IΩs(p)∇2

ppdfN (p,Σ)(p) dp

= Y (p)Σ−1
(
ΣΩs + (pΩs

− p) (pΩs
− p)T −Σ

)
Σ−1. (13)

A detailed derivation can be found in [1]. It should be mentioned that we first differentiate and then discretize. Hence,
this gradient does not necessarily coincide with the gradient obtained by differentiating after discretization.

The fact that we have given the gradient and the Hessian in analytical form allows us to use a Hessian based
optimization algorithm, such as the globalized Newton method [17] as proposed in [1]. A pseudo code is given in
Algorithm 2. The associated parameters have been set as follows:

β =
1
2
, γ =

1
100

, ϕ1 = ϕ2 = 10−6, q =
1
10

.
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Algorithm 2: Globalized Newton method

1: Input: Starting pointp0 ∈ RNp , β ∈ (0, 1), γ ∈ (0, 1), ϕ1,ϕ2 > 0, q > 0
2: Output: Optimal solutionp?

3: while ∇Y
(
pk

) 6= 0 and
∥∥pk − pk−1

∥∥ > 0 do
4: Calculatedk by solving Newton’s equation∇2Y

(
pk

)
dk = −∇Y

(
pk

)
.

5: if “Calculation ofdk possible”and−∇Y
(
pk

)
dk ≥ min

(
ϕ1,ϕ2

∥∥dk
∥∥q)∥∥dk

∥∥2
then

6: Set search directionsk = dk.
7: else
8: Set search directionsk = −∇Y

(
pk

)
.

9: end if
10: Determine step size with Armijo rule, i.e., search for largestσk ∈ {

β0,β1,β2, ...
}

such that:Y
(
pk + σksk

)− Y
(
pk

) ≤ σkγ∇Y
(
pk

)T
sk.

11: Setpk+1 = pk + σksk andk = k + 1.
12: end while

In this paper we assume that all uncertain parameters are optimization variables and vice versa. Little modifi-
cations in the algorithm also cover other cases. Additional deterministic optimization variables would appear in the
indicator function. Thus, the analytical formulation of the gradient (and the Hessian) does not hold. Instead a finite
difference approximation can be used or a negligible uncertainty (noise) can be assigned. If, instead, there are uncer-
tain parametersu, which are not optimization variables, they have to be considered during yield estimation, which
can be achieved by settingp′ = [p,u]T. Nevertheless, during optimization we only usep, e.g., to calculateΣ, pΩs

,
ΣΩs, etc.

4.2 Adaptive Newton-MC

The size of the MC sample is crucial, not only for accuracy but also for the efficiency of the algorithm. According
to Eq. (7), for yield estimation we can use the MC error indicator to determine the sample size depending on the
desired accuracy. For yield optimization, the situation is more involved. The accuracy of yield estimators at interme-
diate steps of the Newton algorithm is not essential to obtain a satisfying final result. In each individual iteration, it
is sufficient to obtain a gradient that indicates the right direction. The stochastic gradient approach also deals with
approximated or inexact gradients, used during the optimization process; see [35], for example. However, our ap-
proach uses more sample points than usual in the stochastic gradient approach, but we also calculate the objective
function with the reduced sample. Only towards the termination of the algorithm, a very accurate gradient may be
decisive to accurately determine the optimal solution. Our algorithmic construction ensures that the high, predefined,
accuracy requirements at the final stages of the algorithm are fullfilled. More precisely, we propose the following
adaptive Newton-MC approach. The optimization method is based on a globalized Newton method, as described in
Algorithm 2. We start with a very small sample size and proceed with a fewfast initial Newton iterations. If no further
yield improvement is observed during the iteration process, the globalized Newton method described in Algorithm 2
would stop. Here, instead, we increase the number of MC observations until an improved yield is observed or a target
accuracy is reached, then we start the next Newton iteration. Only when the target accuracy has been reached and the
yield is not improving anymore, the algorithm terminates.

A pseudo code for the adaptive Newton-MC is given in Algorithm 3. First, we need to define a target accuracy
in form of a maximal standard deviationσY,max for our terminal solution. Furthermore, we have to define the size of
the initial MC sampleN start

MC and an incremental factor inc> 0 such that

Nnew
MC = Nold

MC + incN start
MC .

The sample size is increased until the target accuracy is reached (see line 14 in Algorithm 3), and the standard
globalized Newton method terminates because no further yield improvement can be obtained; i.e., the difference
betweenpk andpk−1 tends to zero (see line 15). In line 3 we can see the rules for a sample size increment. This loop is
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Algorithm 3: Adaptive Newton-MC

1: Input: Starting pointp0 ∈ RNp , max. std.σY,max, starting sample sizeN start
MC , β ∈ (0, 1), γ ∈ (0, 1),

ϕ1, ϕ2 > 0, q > 0
2: Output: Optimal solutionp?

3: while ∇Y
(
pk

) 6= 0 and
∥∥pk − pk−1

∥∥ > 0 do
4: Calculatedk by solving Newton’s equation∇2Y

(
pk

)
dk = −∇Y

(
pk

)
.

5: if “Calculation ofdk possible”and−∇Y
(
pk

)
dk ≥ min

(
ϕ1,ϕ2

∥∥dk
∥∥q)∥∥dk

∥∥2
then

6: Set search directionsk = dk.
7: else
8: Set search directionsk = −∇Y

(
pk

)
.

9: end if
10: Determine step size with Armijo rule, i.e., search for largestσk ∈ {

β0,β1,β2, β3
}

such that:Y
(
pk + σksk

)− Y
(
pk

) ≤ σkγ∇Y
(
pk

)T
sk, else setσk = β3.

11: Setpk+1 = pk + σksk andk = k + 1.
12: end while
13: Calculate standard deviationσY =

√
Y (1−Y )

NMC

14: if σY > σY,max then
15: while σY ′ > σY,max and

∣∣Y (
pk

)− Y ′(pk
)∣∣ < σY,max do

16: Increase sample sizeNnew
MC = NMC + incN start

MC .
17: CalculateY ′(pk

)
andσY ′ with Nnew

MC .
18: SetNMC = Nnew

MC .
19: end while
20: SetY

(
pk

)
= Y ′(pk

)
.

21: Go back to line 3.
22: else
23: Stop withp? = pk

24: end if

activated, if the two previous mentioned conditions are fulfilled. Then, we increase the sample size stepwise (see
line 16) and reevaluate the yield with the new sizeY ′(pk) and its new standard deviationσY ′ (see line 17). Note
that in order to estimateY ′(pk) it is not necessary to evaluateNnew

MC new sample points. Only the incN start
MC additional

points have to be evaluated and can then be fused with theNold
MC old points to obtain the new yield estimator. This

procedure is repeated until the new standard deviationσY ′ reaches the target accuracy (i.e.,σY ′ ≤ σY,max) or the
improvement of the yield is large enough (i.e., the difference between the actual yieldY

(
pk

)
and the yield with the

increased samplingY ′(pk
)

is larger than the target accuracyσY,max). In that case we start a new iteration of the
Newton algorithm, with updated yield and sample size (see line 21). If the target accuracy is fulfilled after a regular
Newton procedure (after line 12), the algorithm terminates (see line 23).

The parameters are chosen as for Algorithm 2; additionally we set the maximal standard deviation, the starting
sample size, and the incremental factor as follows:

σY,max = 0.01, N start
MC = 100, inc = 1.

Another difference in comparison to Algortihm 2 is that we bound the number of Armijo backward steps. If the
inequality in line 10 is not fulfilled after three steps, we setσk = β3 and proceed with the next iteration.

5. NUMERICAL RESULTS

We apply the methods for yield estimation and optimization discussed in the previous sections to a benchmark prob-
lem in the context of electromagnetic field simulation. In particular, we employ the model of a rectangular waveguide

Volume 10, Issue 4, 2020



364 Fuhrl̈ander et al.

with a dielectric inset, similarly to the one used in [36]. This model is well suited for validation purposes, as a closed-
form solution is available [37]. Additionally, it fulfills the assumption of a smooth input-to-output behavior made in
Section 3.2. In the following, we first introduce the problem setting before numerical results for yield estimation as
well as yield optimization are presented.

5.1 Problem Setting

Starting from the time-harmonic Maxwell’s equation on a computational domainD ⊂ R3, one can derive the curl-curl
equation,

∇× (
µ−1∇×Eω

)−ω2εEω = 0 in D, (14)

to be solved for the electric field phasorEω, whereω denotes the angular frequency,µ = µrµ0 ∈ L∞(D) the
dispersive complex magnetic permeability, andε = εrε0 ∈ L∞(D) the dispersive complex electric permittivity, with
the vacuum permeabilityµ0 and the relative permeabilityµr, respectively vacuum and relative permittivityε0 and
εr. Further we have assumed the absence of charges and source currents. Relating (14) to the general problem (1)
introduced in the beginning, we note that the angular frequencyω corresponds to the range parameterr.

The boundary of the domainD is split into three parts, i.e.,∂D = ΓPEC∪ΓP1∪ΓP2, since we consider the model
of an electric waveguide with two portsΓP1,ΓP2 and assume perfect electric conductor (PEC) boundary conditions at
the waveguide walls, i.e.,

n×Eω = 0 onΓPEC. (15)

At the waveguide portsΓP1, ΓP2 we impose lowest-order waveguide boundary conditions [38, Chapter 8.5],

n× (∇×Eω)− jkz10(n×Eω)× n = −2jkz10Einc
ω on ΓP1, (16a)

n× (∇×Eω)− jkz10(n×Eω)× n = 0 on ΓP2, (16b)

wheren denotes the outer unit normal vector andj the imaginary unit. The propagation constantkz10 is given by
kz10 =

√
ω2µ0ε0 − (π/a)2, where, in turn,a denotes the width of the waveguide, as depicted in Fig. 2. According

to [39], the boundary conditions (16) can be derived based on the assumption that the rectangular waveguide is excited
atΓP1 by an incident TE10 wave,

Einc
ω = E0ETE

10e−jkz10z with ETE
10 := sin

(πx

a

)
ey,

whereE0 refers to the amplitude of the incident wave andey denotes the unit vector in they-direction. Additionally it
is assumed that the waveguide dimensions are chosen s.t. only the TE10 mode is propagating without attenuation, that
the ports are placed sufficiently far from any obstacles in the waveguide which might excite higher-order modes, and

a

b

p1

p2

p2

Ω1

Ω2

Ω3

zx

y

FIG. 2: Finite element model of a rectangular waveguide with dielectric inset of lengthp1. The waveguide is excited at the port
ΓP1 by an incident TE10 wave.
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that the homogeneous material at the portsΓP1∪ ΓP2 fulfills εr = µr = 1. For further details on waveguide boundary
conditions, we refer to [38].

As QoI we consider the fundamental scattering parameter (S-parameter) of the TE10 mode onΓP1,

S :=
2

E0ab

(
Eω −Einc

ω ,ETE
10

)
ΓP1

, (17)

where we assumed thatΓP1 is located atz = 0 for simplicity (without loss of generality). Note that the QoI (17) is,
in this case, an affine-linear functional ofEω.

5.2 Weak Formulation and Discretization

In order to solve the boundary value problem (14)–(16) numerically by the FEM, we devise the corresponding weak
formulation. Therefore, we build the inner products of Eq. (14) with test functionsE′ ∈ V , whereV is to be deter-
mined, and integrate by parts employing [40, Theorem 3.31]

(
µr
−1∇×Eω,∇×E′

)
D
−ω2µ0(εEω,E′)D +

(
πt[µ−1

r ∇×Eω], πT[E′]
)
∂D

= 0. (18)

Note that we introduced the trace operators

πt[u] := n× u|∂D

πT[u] :=
(
n× u|∂D

)× n

for brevity of notation. The boundary integral in Eq. (18) vanishes onΓPEC, since we impose PEC boundary conditions
(15) for the test functionsE′ as well. OnΓP1 ∪ ΓP2 we employ the boundary conditions (16) and obtain the weak
formulation: findE ∈ V s.t.

(
µr
−1∇×Eω,∇×E′

)
D
−ω2µ0(εEω,E′)D + jkz10(πT[Eω], πT[E′])ΓP1∪ΓP2

= 2jkz10
(
Einc

ω , πT[E′]
)
ΓP1

∀E′ ∈ V.
(19)

The appropriate function spaceV is a subspace of

H(curl, D) :=
{
u ∈ (

L2(D)
)3

: (∇× u,∇× u)D < ∞
}

,

where, in turn,
(
L2(D)

)3
denotes the complex vector function space of square integrable functions, i.e.,

(
L2(D)

)3
:= {u : (u,u)D < ∞},

cf. [40]. To account for the PEC boundary conditions (15) and obtain a well-defined boundary integral in Eq. (19),V
is chosen as

V :=
{
u ∈ H(curl, D) : πT[u]

∣∣
ΓP1
∈ (

L2(ΓP1)
)3 ∧ πT[u]

∣∣
ΓP2
∈ (

L2(ΓP2)
)3 ∧ πt[u]

∣∣
ΓPEC

= 0
}

. (20)

In order to solve (19) with FEM, we introduce a finite-dimensional function spaceVh ⊂ V and express the
electric field as

Eω,h =
Nh∑

j=1

eω,j Nj ,

whereeω,j ∈ C are the degrees of freedom (DoF),Nh is the number of DoFs, andNj ∈ Vh denotes second-
order, first-kind Ńed́elec basis functions defined on a tetrahedral mesh of the domainD. For further details on the
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curl-conforming discretization, we refer to [41]. The discrete solutioneω = [eω,1, . . . , eω,Nh
]T is then obtained by

solving the linear system (
K−ω2Mε + jkz10Mport

)
︸ ︷︷ ︸

Aω

eω︸︷︷︸
eω

= f(einc)︸ ︷︷ ︸
fω

, (21)

whereAω ∈ CNh×Nh is the system matrix andfω ∈ CNh is the discretized right-hand side. The stiffness matrixK,
the mass-matrixMε, the matrixMport, and the right-hand sidefω in the above expression are given by

Kij = (µ−1
r ∇×Nj ,∇×Ni)D,

Mport
ij = (πT[Nj ], πT[Ni])ΓP1∪ΓP2

,

Mε
ij = µ0(εNj ,Ni)D,

[fω]i = 2jkz10
(
Einc

ω , πT[Ni]
)
ΓP1

.

The S-parameter can then be obtained from the discrete counterpart of Eq. (17)

Sh(ω) =
(
qω, eω − einc

ω

)
CNh

.

As discussed in the previous sections, we then introduce a parameter vectorp ∈ Ξ ⊂ RM to account for
variations in the design parameters, which, in this case, might represent changes in the domainD or in the material
parametersε,µ. Hence, we obtain the parametrized discrete system

Aω(p) eω(p) = fω,

Sh(p,ω) =
(
qω, eω(p)

)
CNh

−(
qω, einc

ω

)
CNh

. (22)

We note that the S-parameter is an affine-linear functional in this case, while we only considered linear functionals
in Section 3.2 for brevity of notation. However, the method can be straightforwardly adapted to address the constant
offset

(
qω, einc

ω

)
CNh

such that the adjoint-based error indicators remain valid.
We proceed with a few details on the implementation of the numerical model. To assemble the linear system (22),

we employ the FE libraryFENICS[42]. As FENICS 2017.2.0does not support complex numbers, we assemble real
and imaginary parts of the matrices separately. We then useNUMPY to impose the PEC boundary condition (15)
andSCIPY to solve the resulting linear system of equations with a sparse-LU decomposition. Employing the readily
available LU decomposition, the corresponding dual solutionzω(p) can then also be obtained with negligible costs,
since the dual problem,

A?
ω(p)zω(p) = qω,

can again be solved by forward-backward substitution.

5.3 Numerical Results

We consider 12 uncertain parameters
p = [p1, . . . , p12]

T
.

Two of them are geometrical parameters given in mm (length of the dielectrical inlayp1 and length of the vacuum
offsetp2) and ten are material parameters with effect on the relative permittivityεr|Ω2 and permeabilityµr|Ω2 on the
dielectrical inlay

εr|Ω2 = p5 + (p3 − p5)(1 + jωp6τ)−1 + (p4 − p5)(1 + jωp7τ)−1
,

µr|Ω2 = p10 + (p8 − p10)(1 + jωp11τ)−1 + (p9 − p10)(1 + jωp12τ)−1
,

where

ω = 2πf,

ω0 = 2π
(
20× 109 Hz

)
,

τ =
1

ω0
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with frequencyf (in Hertz). In order to consider the influence of the number of uncertain parameters, tests with four
uncertain parameters are also performed. For this purpose we consider a modified parameter vector,

p(m) = [p1, p2, p13, p14]
T
,

wherep1 andp2 are the geometrical parameters from above, andp13 andp14 are material parameters with the following
effect on relative permeability and permittivity:

ε(m)
r |Ω2 = 1 + p13 + (1− p13)

(
1 + jω

(
2π5× 109

)−1
)−1

,

µ(m)
r |Ω2 = 1 + p14 + (2− p14)

(
1 + jω

(
1.1 · 2π20× 109

)−1
)−1

.

For yield optimization we set the starting pointp0 for 12 parameters to

p0 = [9, 5, 2, 0.5, 1, 1, 1.1, 2.5, 1, 1, 1, 2]T.

The estimation tests are done for a reference valuepe close to one optimal solution:

pe = [8.6, 3.8, 2, 0.5, 0.7, 0.6, 1.4, 2.8, 1.7, 0.8, 0.3, 1.4]T.

For the tests with four parameters we set the starting points to

p(m)
0 = [9, 5, 1, 1]T,

p(m)
e = [10.36, 4.76, 0.58, 0.64]T.

The standard deviation is set toσ = 0.72 mm for geometrical, andσ = 0.32 for material parameters. In order to avoid
unphysical values, instead of a normal distribution we use a truncated normal distribution for the MC sample gener-
ation. We truncate with an offsett of ± 3 mm and± 0.3 for the geometrical and material parameters, respectively.
The performance feature specifications are

|S(p, ω)| !≤ −24dB ∀ω ∈ Tω = [2πf1, 2πf2] = [2π6.5, 2π7.5] in GHz.

Related to the setup of the performance feature specifications in Eq. (4) this meansc = −24dB andQ(p, r) =
|S(p,ω)| with the frequencyω as range parameter. We consider eleven equidistant frequency pointsωj ∈ Tωj in
the frequency range. The reference solution for yield estimation is

YRef(p) = 74.60%,

for 12 uncertain parameters, and
Y (m)

Ref (p) = 95.44%,

for four uncertain parameters. Both reference solutions have been calculated with a closed-form solution of the E-field
formulation and standard MC method withNMC = 2500, which is the smallest sample size fulfillingσY,max = 0.01
for all sizes of the yield, according to Eq. (7).

5.3.1 Quality of the Gradient

As mentioned in Section 4 there is a difference between differentiating or discretizing first. Furthermore, for the
sample generation we use a truncated normal distribution instead of a normal distribution. Thus, the gradient we use
for optimization deviates from the exact gradient, which can be thought of as an inexact Newton method [43], with
approximations in the root-finding problem itself, i.e., here the gradient (12), and the Jacobian which is in our case
the Hessian (13).
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To ensure that the yield is optimal at the end and no further improvement is possible, an extension can be added
to the optimization algorithm. At the optimal solution, the gradient can be calculated with a finite difference quotient
∇pYDQ. The gradient from Eq. (12) will be denoted∇pYG, to avoid any confusion. We consider the difference
between the two gradients and expect it to be smaller than a constantη,

|∇pYDQ(p)−∇pYG(p)| ≤ η. (23)

Figure 3 compares the two gradients∇pYG and∇pYDQ for the waveguide example where the only uncertain design
parameter is the length of the inlayp1. On the left, we see the yield over the parameterp1, on the right we see the
graphs of the gradients over the parameterp1. For this calculation we set the sample size toNMC = 106 and the step
size in the difference quotient toδ = 10−3. The two gradients show a similar behavior, especially near the optimum
the gradients agree well. Figure 4 shows how the two gradients approach each other for largeNMC. Thus, if Eq. (23) is
not fulfilled the number of sample points to calculate the gradients can be increased until (23) is fulfilled or an upper
bound forNMC is reached. In the former case, the applied gradient∇pYG is accurate and the optimal solution reliable.
In the latter case, a further improvement of the yield would still be possible due to the limited gradient accuracy. In

7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

p1

Y
ie
ld

7 8 9 10 11 12
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

p1

G
r
a
d
ie
n
t

∇pYG

∇pYDQ

FIG. 3: Comparision of the gradients∇pYG and∇pYDQ for NMC = 106 and finite difference step sizeδ = 10−3 for truncated
normal distribution

10
4

10
5

10
6

10
7

10
8

2

4

6

8

10
·10

−2

NMC

G
ra

d
ie

n
t

∇pYG

∇pYDQ

FIG. 4: Convergence of the gradients∇pYG and∇pYDQ for increasingNMC. Calculated inp = 10.8685mm and with finite
difference step sizeδ = 10−3.

International Journal for Uncertainty Quantification



Yield Optimization based on Adaptive Newton-Monte Carlo and Polynomial Surrogates 369

this case the yield optimization could be continued with the gradient∇pYDQ. However, this would require additional
computational effort, especially for a large number of uncertain parameters. The optimal solution can also be used as
a starting point for an alternative optimization procedure.

5.3.2 Yield Estimation

We proceed by comparing the proposed hybrid approach with standard MC and a surrogate-based MC approach with-
out hybridization. The surrogate model is constructed based on sparse-grid interpolation as explained in Section 3.2.
In order to achieve a high accuracy in theL∞ norm, we employ, in this work, uniform weight functionswm in the
ranges given by the nominal parameter valuesp ± truncation offsett. The comparison is based on both the com-
putational effort and the accuracy. For the accuracy we use the relative error between the reference solution and the
solution of the considered method, i.e., for the hybrid approach,

errH =
|YRef− YH|

YRef
, (24)

errSC, errMC for SC and MC, respectively. We measure the computational effort with the number of high-fidelity
evaluations (i.e., matrix factorizations in FEM). Here we have different levels of high-fidelity evaluations due to mesh
refinement within the proposed hybrid approach. We start with a mesh sizeh, and if necessary divide it by 2. The
difference in the computational effort for each refinement level depends on the model structure and the solver used.
Assuming an optimal solver with an effort which is linear in the number of degrees of freedom, the effort increases
by a factor of 4 in the case of a 2D problem and by a factor of 8 in the case of a 3D problem. Since in our case the
E-field is constant in they-direction, the grid is only refined inx- andz-directions. Thus, the computational effort of
a method is measured through

eff = #HFh + 4#HFh/2 + 16#HFh/4, (25)

which adds up the number of high-fidelity evaluations on the different levels, each multiplied by the factors mentioned
above.

The standard approach to carry out yield estimation, with the same accuracy as with the proposed hybrid ap-
proach, would be a MC analysis with the finest mesh used within the hybrid approach, referred to as MCfine. If the
mesh refinement strategy is additionally applied, the method is denoted as MCrefine. In order to build the surrogate
model both for SC and for the hybrid approach, we use the first grid with mesh sizeh without further refinement to
evaluate the model at the Leja nodes. In Table 1 we see the results of the comparison. We consider two versions of
SC, each with different accuracy (number of Leja nodes). The surrogate model used for the hybrid approach is the
same as for SC with 90 Leja nodes. For each approach we use the same MC sample as for the reference solution.
With the hybrid approach and MC we achieve the same result as with the closed-form reference solution. Out of these
three, the hybrid method requires the least computational effort. Compared to MCrefine, we can save 73% computing
time compared to MCfine, even 98%. Comparing the hybrid and MCrefine approach, we observe that most of the MC

TABLE 1: Comparison of different yield estimation approaches for 12 uncertain parameters. Different methods: MC,
SC, and hybrid (H).# Leja indicates the number of Leja nodes for one frequency pointωj , # HF the number of
high-fidelity evaluations to build the surrogate model (surr.), to evaluate (critical) MC samples (MC) with indicated
refinement, eff the measurement for computational effort according to Eq. (25), and err the relative error according
to Eq. (24)

Approach # Leja # HFh surr. # HFh MC # HFh/2 MC # HFh/4 MC eff err (%)
MCfine — 0 0 0 22,705 363,280 0.0000
MCrefine — 0 22,705 25 6 22,901 0.0000

H 90 990 4812 25 6 5998 0.0000
SC 90 990 0 0 0 990 6.2235
SC 1600 17,600 0 0 0 17,600 0.4290
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sample points are evaluated on the coarsest FE grid. Only for a few points, a refinement of the grid toh/2 (25 sample
points) orh/4 (6 sample points) is necessary. Using the same surrogate model as for the hybrid approach, pure SC
has much less computational effort with eff= 990, but the error is larger than 6%. Increasing the number of Leja
nodes to 1600 results in three times higher computational effort compared to the hybrid approach, with an error still
larger than 0.4%.

Table 2 shows the results for the same waveguide with only four uncertain parameters. The statement remains
unchanged. However, the influence of the number of parameters can be seen. With four uncertain parameters, also
with SC, we can reduce the error to zero, with only about two and a half times the computational effort compared
to the hybrid method. The higher the number of uncertain parameters, the more gain can be expected from the
hybrid approach compared to a SC method. Compared to MCrefine, with the hybrid approach, we can save almost
98% computing time compared to MCfine, even 99.8%. This means that the advantage of the hybrid approach over
MC increases as the number of parameters decreases. Nevertheless, we know by construction, that even for high
numbers of uncertain parameters, the hybrid method can never become worse than MC, excluding the computational
effort to build the surrogate model (which could scale poorly for a high-dimensional problem) and evaluate the error
indicator.

5.3.3 Yield Optimization

We compare the proposed adaptive Newton-MC from Algorithm 3 with the standard Newton method from Algo-
rithm 2, both with the same limited number of Armijo backsteps and the presented hybrid approach for the yield
estimation. In both cases we set the target accuracy toσY,max = 0.01. The adaptive approach starts with 100 sample
points and increases this number adaptively until optimality and a target accuracy are achieved. In the nonadaptive
approach, we specify a fixed sample size so that the target accuracy is guaranteed at all times during the optimization
process. This fixed sample size isNMC = 2500. In Table 3 we see the results for tests with 12 or 4 uncertain param-
eters. The number of iterations of single yield estimations within the optimization process, the computational effort
(eff) and the optimal yield value (Y ?) are given. Note that during the optimization process the surrogate model is only
built once, for the starting point. Accepting higher computational effort, the surrogate model can also be recalculated
in each iteration step for the current solution, or built at the beginning in a larger interval thanp0 ± t.

With 12 uncertain parameters, we started with a yield of 15%. The adaptive and the nonadaptive approach lead
to different local optima with similar yield values. Both take a bit more than 30 iterations. On average, two and a
half yield estimations are performed per iteration using the adaptive approach. This is due to multiple evaluations
by Armijo backsteps. The nonadaptive approach has only 1.2 estimations per iteration. This can be explained by the
fact that the adaptive approach performs several Newton optimizations with different sample sizes one after the other.
Shortly before a Newton procedure is terminated, there is usually no further improvement, which is why Armijo
backsteps increase and so does the number of yield estimations. This is the case every time before the sample size is
increased in the adaptive algorithm. In the nonadaptive approach, this behavior occurs only once at the end. Potential
for improvement in the adaptive approach lies in further reducing the number of yield evaluations through smoother

TABLE 2: Comparison of different yield estimation approaches for 4 uncertain parameters. Different methods: MC,
SC, and hybrid (H).# Leja indicates the number of Leja nodes for one frequency pointωj , # HF the number of
high-fidelity evaluations to build the surrogate model (surr.), to evaluate (critical) MC samples (MC) with indicated
refinement, eff the measurement for computational effort according to Eq. (25) and err the relative error according to
Eq. (24)

Approach # Leja # HFh surr. # HFh MC # HFh/2 MC # HFh/4 MC eff err (%)
MCfine — 0 0 0 26,360 421,760 0.0000
MCrefine — 0 26,360 5 1 26,396 0.0000

H 30 330 165 5 1 531 0.0000
SC 30 330 0 0 0 330 0.1257
SC 120 1320 0 0 0 1320 0.0000
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transitions from one sample size to the other. Nevertheless, the adaptive approach reduces the computational effort
by a factor of 2 compared to standard Newton; see column eff in Table 3. In tests with only 4 uncertain parameters,
the computing effort was even reduced to 10%. In this case, the adaptive approach resulted in significantly fewer
iterations. The ratio between iterations and yield estimations remains unchanged.

For the case with 4 uncertain parameters we also draw a comparison to standard procedures. Standard procedure
means, in this case, combining a standard MC analysis for the yield estimation with a standard Newton method for
the optimization. On the coarsest grid(h), 816,816 evaluations with FEM were necessary to optimize the yield; i.e.,
eff = 816,816. Thus, with the proposed adaptive Newton-MC, a saving of 98.3% in computing effort could already
be achieved compared to the standard procedure mentioned above. However, in order to achieve the same accuracy
as with the proposed method, the finest grid(h/4) has to be used for all sample points. We assume that the number
of function evaluations does not change significantly due to the grid refinement. This can be motivated by the fact
that a similar number of iterations, yield estimations, and function evaluations were needed for calculation with the
closed-form solution as for the FE model with coarser grid. Under this assumption we obtained an effort factor of
eff ≈ 13× 106. Thus the saving of computational effort is even 99.9%.

For 12 uncertain parameters, in Table 4 we see how many MC sample points have been used in which iteration.
For most of the iterations a low number of MC sample points is sufficient; only in the last iterations we need to expend
more computational effort in order to guarantee the predefined target accuracy.

6. CONCLUSION

In this paper we proposed an adaptive method for yield estimation and optimization. For yield estimation we de-
veloped a hybrid approach combining reliability and accuracy of a high-fidelity MC analysis and the efficiency of

TABLE 3: Comparision of adaptive and nonadaptive Newton’s method with 12 and 4 uncertain parameters:# Leja
indicates the number of Leja nodes for one frequency pointωj , # param. the number of uncertain parameters,
optimization the method used,# It the number of iterations,# YE the number of yield estimations, eff the
computational effort, andY ? the optimal yield value

Estimation # Leja # param. Optimization # It # YE eff Y ? (%)
H 90 12 adapt. Newton-MC 33 86 376,073 74.84

H 90 12 Newton 37 42 682,745 78.20

H 30 4 adapt. Newton-MC 12 27 13,716 95.44

H 30 4 Newton 30 34 138,158 97.92

TABLE 4: Progress of yield optimization with
adaptive Newton-MC for 12 uncertain parameters.
Number of MC sample points for each iteration of
the optimization algorithm

Iteration NMC

0–12 100
13–14 200
15–18 300

19 500
20–22 600

23 900
24–30 1000

31 1800
32–33 1900

Volume 10, Issue 4, 2020



372 Fuhrl̈ander et al.

surrogate-based techniques such as stochastic collocation. In case the accuracy of the surrogate model is not suffi-
cient, sample points are reevaluated employing the high-fidelity FE model. Mesh refinement is applied if the accuracy
of the FE model itself is too low. This guarantees error control while only a very small subset of the MC sample is
evaluated based on expensive high-fidelity evaluations. Adjoint error indicators were applied to estimate the errors
of the surrogate model and the FE model. For yield optimization we proposed an adaptive Newton-MC method,
based on a globalized Newton method. During the optimization process, numerous yield estimations are performed.
In order to control the MC error and at the same time save computational effort, we adaptively increase the number
of MC sample points used during the optimization. Thus, the adaptive Newton-MC in combination with the hy-
brid approach allows us to control the FE error, the MC error, and the surrogate error. At the same time it is much
more efficient than conventional MC approaches with a standard Newton method. Numerical tests on a dielectrical
waveguide confirm the benefits of the presented method. Future research will deal with the transitions in the adaptive
Newton-MC when the MC sample size is increased. Furthermore, although we already use a hierarchical model for
Monte Carlo analysis within the optimization, we plan to explore a combination of this with a multilevel Monte Carlo
approach [3].
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18. Babǔska, I., Nobile, F., and Tempone, R., A Stochastic Collocation Method for Elliptic Partial Differential Equations with
Random Input Data,SIAM J. Numer. Anal., 45(3):1005–1034, 2007.

19. Chkifa, A., Cohen, A., and Schwab, C., Breaking the Curse of Dimensionality in Sparse Polynomial Approximation of Para-
metric PDEs,J. Math. Pures Appl., 103(2):400–428, 2015.

20. Papaioannou, I., Daub, M., Drieschner, M., Duddeck, F., Ehre, M., Eichner, L., Eigel, M., Götz, M., Graf, W., and
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