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With the ever accelerating spread of artificial intelligence (AI) in virtually all disciplines of science

and engineering, the geotechnical studies and practices have also adopted these approaches for ex-

ploring and modeling of complex problems whose thorough understanding often falls beyond the

reach of analytical and even numerical methods. In the midst of the overwhelming appeal of AI

during recent years, however, there remains some overlooked fundamental questions regarding the

inherent ability of AI-based models to represent the constitutive behavior of materials in general,

and geomaterials in particular. This brief communications explores, from a theoretical point of view,

the question of if, and how, an AI-generated model can replace symbolic constitutive models for

materials and what would be the future of theoretical constitutive modeling in the age of AI.
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1. INTRODUCTION

“[The] confusion of reduction as a tactic with reductionismas an ontological
stance is like saying that a square wave is really the sum of a large number of
sine waves because I can so represent it to an arbitrary degree of accuracy.”

Richard Levins and Richard Lewontin,
the dialectical biologist, 1985.

It was Roy Amara, the futurist scientist, who famously said,“We tend to overestimate the effect
of a technology in the short run and underestimate the effectin the long run.” The statement is
arguably accurate for artificial intelligence (AI) and its application to many problems, including
among the materials sciences. History will indeed be a fairer judge, but when looking at the body
of research and scientific perception of AI, we seem to be situated at the transition between what
Amara meant by short run and long run. The overenthusiastic beliefs in AIs are being gradually
adjusted by more realistic conceptions that outline the nonetheless impressive scope, as well as
the limitations and pitfalls of such approaches.
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In the realm of materials modeling, and geomechanics in particular, the AI methods, and
specifically, artificial neural networks (ANNs), have been widely used for problems that span
from simple multivariable calibration procedures to modeling of complex boundary value prob-
lems associated with ground excavation and slope stability(Moayedi et al., 2018). As expected,
the developed ANNs for such case-specific loading programs remain, by nature, case specific
and are applicable only within the scope of the dataset for which the models are trained.

Nonetheless, such inherent case specificity and dependencyon the training scope did not
prevent the percolation of ANN modeling approaches into themore general domain of problems
such as constitutive modeling of materials. Most notably, in the early and mid 1990s, studies
by Ghaboussi and coworkers (Ghaboussi et al., 1991), and others such as Ellis et al. (1995)
attempted, with some success, to replace the constitutive models of concrete and geomateri-
als with ANN models. Ever since, neural networks have been adopted for representing various
types of constitutive models, for instance, the elasticityand plasticity of foams (Liang and Chan-
drashekhara, 2008; Settgast et al., 2019), the elastoplasticity of solids (Zhang and Mohr, 2020),
viscoplasticity (Furukawa and Yagawa, 1998; Xu et al., 2020b), and the multiscale response of
fiber-reinforced composites (Liu et al., 2020). Huang et al.(2020) explored the performance of
deep neural networks in representing a mechanical constitutive model, including the mutiscale
response of composites, by adopting boundary-value-problem FEM simulations as the train-
ing data. The comparison provided therein with other forms of function approximations clearly
demonstrated the strength of neural networks rooted in their regularization and generalization
capabilities. Moreover, in a noteworthy recent study, Xu etal. (2020a) outlined an ANN-based
incremental framework adaptable to various classes of materials, including hyperelastic, elasto-
plastic, and multiscale composites. In other studies related to materials modeling, neural net-
works have been adopted as an offline upscaling tool to arriveat a representation of material
behavior linked with its microstructural attributes. Notable works here include modeling of the
complex path-dependent multiscale plasticity (Mozaffar et al., 2019) and poroplasticity (Wang
and Sun, 2018).

From a broader historical perspective, such data-driven approaches to materials modeling
have been dubbed as the “fourth paradigm” in materials characterization proceeding experimen-
tal, analytical, and numerical methods (Agrawal and Choudhary, 2016). Recent decades have
witnessed the birth of numerous machine learning techniques, each exploring new horizons in
the capabilities of AI, and many of which have been adopted byresearchers in various fields of
materials modeling. Studies such as Gao (2018), Bock et al. (2019), and Moayedi et al. (2018)
provide a thorough comparative review of these techniques and their advantages and disadvan-
tages specific to engineering problems and geomechanics in particular. The general verdict of
such reviews is that, in the field of materials modeling, AI-based models are capable of captur-
ing, to a good extent, the behavior of the target materials subjected to generic loading protocols.
However, as in almost every field, no “one-size-fits-all” approach exists, and the modeling tech-
niques are often tailored for the specific problem at hand (Bock et al., 2019; Gao, 2018). Also,
not surprisingly, any attempt at generalization of AI-based models is strictly contingent on the
availability of comprehensive good-quality training data(Bock et al., 2019; Peng et al., 2020;
Xu et al., 2020a; Zhang and Mohr, 2020). While this might seemto be a practical shortcoming
at first glance, it quickly turns into a fundamental issue recalling that the size of the ideal train-
ing dataset increases exponentially with the number of prominent model parameters (Alwosheel
et al., 2018; Hestness et al., 2017).

Beyond such well-understood limitations, the applicability of AI-based constitutive models
in capturing more complex loading conditions remains yet tobe verified due to more fundamental
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concerns (Mozaffar et al., 2019; Xu et al., 2020a). The difference between the two above-
mentioned classes of problems (i.e., case-specific boundary value problems vs. constitutive mod-
eling) is visualized for a pair of typical cases in Fig. 1. Fora simple boundary value problem
concerning the stability of a foundation, a generic ANN, as schematically depicted in Fig. 1(a),
can be trained for inputs such as the vertical load and the size of the footing, while the output
of the model is the factor of safety (FS) against failure [Fig. 1(b)]. Given a proper set of train-
ing observations, the trained model can then be used to predict the stability of the next footing
whose properties lies within the range of data used for training. Expectedly, the model is only
applicable for the loading types for which it is trained for,and any extension beyond the loading
conditions included in the training dataset requires an update in training.

On the other hand, for the case of representing a constitutive model, the ANN is trained
for a finite set of stress-strain responses associated with afinite number of loading paths, while
the final model is expected to be applicable for all the possible loading paths which are not
necessarily included in the training dataset, as illustrated in Fig. 1(c).

Thus, a fundamental difference arises between the modelingthrough ANN of case-specific
problems, such as the one in Fig. 1(b), as compared to ANNs representation of a constitutive
model [see Fig. 1(c)]; whereas the former class embraces itscase specificity, the latter has an
implicit claim to generality that is the basis of every conceptual “model.” In other words, a
constitutive model differs from an ad-hoc fit precisely in that it claims to be applicable to loading
conditions for which it is not necessarily calibrated/trained.
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FIG. 1: (a) Structure of a generic three-layer neural network. (b) Boundary value problem of stability of a
simple foundation with width ofw bearing the vertical force ofF . (c) Representing a constitutive model
via an ANN. The model is expected to predict the response to loading paths that are not explicitly included
in the training dataset.
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Richard Levins, quoted at the beginning of this paper, was among the first to reflect upon
different strategies for general model building in his seminal 1966 article where he outlined an
almost zero-sum tradeoff among precision, realism, and generality of a model (Levins, 1966). A
physical model, in Levins’s opinion, is bound to make a compromise among these three basic
elements with one or two elements often being sacrificed in favor of others. Levins’s arguments,
framed mainly for mathematical models in biology, was greeted by a mixture of approval and
criticism by its successors with the core idea of the existence of such a trade-off being still ar-
gued to date (Lewis and Belanger, 2015; Orzack, 2012). Nevertheless, Levins’s argument on the
role and the trade-off thereof precision, realism, and generality becomes of particular relevance
when evaluating the efficacy of AI models to fully represent broad concepts such as constitutive
behavior.

In this paper we ponder, from a rather speculative point of view, the inherent capability of,
and conditions required for, artificial intelligence and ANNs in particular to represent a mechan-
ical constitutive model. The requirements regarding the claim of generality are scrutinized in
the context of common and more elaborate incrementally nonlinear constitutive models for ge-
omaterials. The idea of sufficient domain knowledge is introduced that ensures the generality
of an AI-based model. The example of classical incrementally linear soil models is compared
with incrementally nonlinear models with the possibility of the claim of generality only being
apparent for the former. The paper concludes with armchair contemplation of the role of theoret-
ical constitutive modeling in the age of artificial intelligence. Despite the contemplative nature
of the study, the practical field of AI in geotechnical engineering can doubtlessly benefit from
such a bird’s eye overview of the theoretical basics in relation to the state-of-the-art research
in AI. Through a more accurate charting of AI’s capabilitiesin modeling of materials, such ex-
plorations can serve as a primary guideline for researchersand engineers to better realise the
scope of practical possibilities in geotechnical modelingwhile also preventing crucial pitfalls
associated with overextension of AI models without necessary precautions.

2. CLAIM OF GENERALITY

Explicit definitions for the concept of generality in the context of modeling, and the different
types that it assumes, have been offered in Weisberg (2004) with some quantitative scales based
on measure theory put forward in Lewis and Belanger (2015). Loosely put, generality of a model
refers to its capability of being applicable to a range of problems for which the model is not
directly trained or calibrated. For instance, a soil constitutive model that is calibrated using
drained triaxial test data is implicitly claiming, and is indeed expected, to capture other common
loading conditions such as undrained or simple shear. Notwithstanding the comparative notion
adopted herein, the claim of generality, expressed or otherwise implied, is at the core of all
constitutive models inasmuch as a constitutive model is different from an ad-hoc fit.

In the case of traditional symbolic constitutive models, the claim of generality originates
from the theoretical formalism upon which the model is based. By being established upon a
physically sound basis such as thermodynamic requirements, potential functions, frame indiffer-
ence, and tensorial isotropy, symbolic constitutive models claim that, once properly calibrated,
they are applicable to loading program beyond the one for which they are initially calibrated.

Artificial intelligence, on the other hand, embraces quite wholeheartedly the ad-hocery as-
sociated with fitting in the absence of a formalism. The network weights in ANN are updated
and eventually optimized without any regard to the possibleformalism that the network might
or might not represent. Therefore the question arises as to whence the claim of generality for
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such models can originate. Indeed, it is well known that ANNscan be regarded as universal
approximation functions which, in principle, are capable of estimating any multivariable, con-
tinuous function (Hartman et al., 1990; Hornik et al., 1989). Nevertheless, doubt still remains as
to whether the accuracy required for the claim of generalitycan be achieved based on a finite set
of observations used for training.

Implied here is the fact that the claim of generality refers only to the loading conditions and
does not extend to the material’s property. A model, symbolic or AI-based, can only be inter-
polated within the range of material properties for which itis calibrated or trained. Considering
geomaterials, for instance, if a model is calibrated for a given range of void ratios and stresses, it
cannot be expecteda priori to be applicable beyond that range. The generality in this case refers
to the fact that the model should be predictive of all combinations of stress and strains applied at
the boundary.

2.1 Sufficient Domain Knowledge

The question of generality, as formulated herein, lies at the heart of the skepticism that propo-
nents of theoretical methods sometimes exhibit toward artificial intelligence. However, we argue
that the claim of generality can be justified for artificial intelligence based models of materials
through what we may call “sufficient domain knowledge,” or SDK for short. Simply put, the
idea of sufficient domain knowledge envisages a set of experiments which collectively describes
the behavior of material completely. Hence, it follows thatany model (whether or not it is based
upon a formalism) that can be uniquely calibrated (or is successfully trained) to capture SDK,
will ineluctably be capable of predicting all the other loading conditions possible within the do-
main of the physics being studied. Worth noting is that the interpretation of generality adopted
here is similar to what is dubbed asp-generalityby Weisberg (2004). Of course, it is crucial to
notice that the domain of the physics being concerned dictates the size of SDK. For instance, the
SDK required for the mechanical behavior of materials is considerably smaller than that required
for, for instance, thermomechanical behaviors.

For the mechanical behavior of geomaterials, a plausible SDK includes the stress-strain and
volumetric responses of the soil to tests such as drained andundrained triaxial and simple shear
experiments. Given the scope of the physics intended to be captured, the SDK may include static
and dynamic experiments, as well as loadings that capture more intricate properties such as the
noncoaxial loadings represented by hollow cylinder experiments. It is important to notice that we
do not intend here to define the exact SDK but rather to examinethe possibility of its existence.
What is included in SDK can then be determined through theoretical consideration of the physics
domain or simply through trial and error.

Based on the above argument, the generality of an AI-based constitutive model is ensured
if a finite-size SDK is shown to exist, meaning that the concerned constitutive behavior, in its
entirety, can be encapsulated into a finite set of observations.

2.2 Constitutive Modeling, Reducibility, and Sufficient Do main Knowledge

We argue in this section that the existence of a symbolic constitutive model, by and in itself,
implies the existence of a finite-size sufficient domain knowledge.

Envisaging soil sample as a system of interacting particles, from a micromechanical perspec-
tive, the behavior of the assembly is governed by the position and velocity of numerous particles
and different physics that govern their equally numerous interactions. Thus, for all practical
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purposes, the amount of information required to interpret the collective behavior in terms of
particle-scale properties can be assumed to be infinite. In much the same manner as discrete
elements method (DEM) simulations, the overall behavior atthe sample (macroscopic) level
originates from equations of interactions and Newton’s laws of motion solved algorithmically
for all the particles. While often taken for granted, it is not given that the collective behavior
arising from such repetitive algorithms should be explicable via a so-called “covering law,” a.k.a
a constitutive model for the case of multiagent materials (Sawyer, 2013). Indeed, the chaos the-
ory of dynamic systems argues that deterministic constitutive models can only be formulated for
variables that do not exhibit sensitive dependence on initial conditions (Prokopenko and Einav,
2015; Reisch, 1991) and as a result, can be reduced to statistical descriptions. For the case of
geomaterials, for instance, as much as constitutive modelscan be set up for averaged properties
such as stress-strain relationships, they cannot be extended to predict characteristics such as lo-
cation and the shape of strain localization patterns (e.g.,shear bands), which depend sensitively
on local parameters.

Therefore the existence of a constitutive model implies thereducibility of the material’s
behavior with respect to the considered physics domain; thefact that the collective response of
millions of particles is assumed to be encapsulated in a formulation involving a mere handful of
state and material variables is inevitably based upon such areductionism.

Coming back to the concept of sufficient domain knowledge, ifthe minimum size of SDK is
infinite, it entails that no finite set of parameters should beable to describe the intended physical
behavior. Combined with the reducibility argument provided above, it can then be deduced, via
proof by contradiction, that if a constitutive model existsthe behavior is then reducible, which
also means that a finite-size SDK should exist. Hence it follows that

if a constitutive model is believed to exist, a proper AI-based model, ad hoc as it
is, should be able to represent the constitutive model in itsentirety.

There would indeed be processes (chaotic events, for instance) for which the AI-based meth-
ods cannot produce a reliable model. However, this is not indicative of an inherent shortcoming
of AI but is rather due to the fact that a constitutive model simply does not exist.

3. EXAMPLE: INCREMENTALLY LINEAR AND NONLINEAR CONSTITUTI VE
MODELS FOR SOILS

The reduction of symbolic constitutive models to a finite setof inputs, i.e., sufficient domain
knowledge or SDK, is discussed here through two general classes of models commonly used for
geomaterials—incrementally linear and incrementally nonlinear models.

Due to their inherent dissipative nature and path-dependent response, soil constitutive mod-
els are often formulated in an incremental form whereby the rate of stresses is related to that of
strains. Considering small strain ranges for simplicity, the constitutive relation takes the follow-
ing general form:

σ̇ij = Cijklε̇kl, (1)

where the overdot denotes the time derivative (rate),σ andε are the second-order stress and
strain tensors, andC is the fourth-order constitutive stiffness tensor. Einstein notation is adopted
where repetition of indices indicates summation.

Given the path dependence of geomaterial response, the constitutive stiffness tensorC is
often a function of current stress and state of material, i.e., C = C(σ, S), with S being the
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set of state variables defining the current state of materials. The constitutive model is deemed
incrementally linear when the constitutive tensorC does not depend on loading rate, in this case
ε̇, which means that the constitutive behavior can be understood and explored independently
from the applied loading.

The typical stress response of an incrementally linear model to a so-called strain probing
program is shown in Figs. 2(a)–2(c), where increments of strains with the same magnitude but
different ratios of principal values are applied [Figs. 2(a) and 2(b)], with the incremental stress
response as given in Fig. 2(c). While the applied strain probes falls along a circle, the stress
response envelope traces a rotated ellipse whose characteristics depend on the particularities
of C. Figure 2(c) also shows how mapping of the strain probe onto the corresponding stress
response is represented by the fourth-order tensorC and the tensorial product in Eq. (1).

For the case of incrementally linear models inD dimensions, the constitutive behavior can
be fully captured if the response of the material is known forat leastD linearly indepen-
dent strain increments whose combination can span the spaceof possible strain increments.
GivenD linearly independent strain rates{ε̇(1), ..., ε̇(D)} and their respective stress responses
{σ̇(1), ..., σ̇(D)}, the response to any arbitrary strain rate can now be found bytreating the se-
lectedD strain rates as basis:

σ̇ij = Cijklε̇kl = Cijkl

D
∑

q=1

a(q)ε̇
(q)
kl =

D
∑

q=1

a(q)σ̇
(q)
ij , (2)

whereε̇(q) are theD linearly independent strain rates andσ̇
(q) are the associated stress responses

for which σ̇
q
ij = Cijklε̇

q
kl. Herea(q)’s are coefficients describing the decomposition of strain
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of strain is kept constant. (c, d) Stress response to strain probing of incrementally linear and nonlinear
materials, respectively.

Volume 1, Issue 2, 2020



164 Pouragha, Eghbalian, & Wan

tensors into their basis. Simple though it may seem, Eq. (2) demonstrates how, for the case of
incrementally linear models, the constitutive relation atany particular state of material can be
encapsulated intoD separate observations. Hence the set of observations{ε̇(q), σ̇(q)} can be
said to form a sufficient domain knowledge, SDK, for the givenstress and material state. The
proof procedure can be readily extended to common elastoplastic models where two separate
tensorial zones, associated with loading and unloading paths, are recognized.

It is important to notice that the relation in Eq. (2) could not have been obtained were it
not for the fact that the constitutive stiffnessC remains constant for different strain increments.
Moreover, the provided proof only shows the possibility of afinite SDK that encapsulates the
constitutive behavior in a limited set of observations. It is crucial to notice, in practice, that
the SDK does not represent a sufficient training set for all ofan arbitrary ANN model, which
possibly involves significantly more degrees of freedom than can be optimized by such a limited
number of observations.

Returning to the types of geomechanical constitutive models, it is known that for granular
material such as sand, the constitutive behavior does depend on loading direction, which leads
to a class of advanced models called incrementally nonlinear, as studied by Darve and cowork-
ers (Darve, 1990; Nicot and Darve, 2007). For such models theconstitutive stiffness depends on
the applied strain rate, or rather its direction, i.e.,

C = C

(

σ, S,
ε̇

||ε̇||

)

, (3)

where ||ε̇|| =
√

ε̇ij ε̇ij is the magnitude of strain increment and the termε̇/||ε̇|| designates
the direction of applied strain rate. Crucially, the form ofconstitutive tensor in Eq. (3), while
nonlinear does not violate the first-order homogeneity requirement of Eq. (1) with respect to
strain rates. The typical response of an incrementally nonlinear model to strain probing is given
in Fig. 2(d), where, unlike the incrementally linear case [Fig. 2(c)], the response stress envelope
no longer falls along an ellipse†.

It is obvious right away that the calculation in Eq. (2) no longer holds since the constitutive
stiffnessC varies for each strain rate, and thus the question arises as to whether a sufficient do-
main knowledge can, in principle, be realized for such cases. One can still argue, rather loosely
we admit, that if a symbolic constitutive model is found to capture the directional dependency of
C with a finite number of variables, then there would exist a finite number of observations based
on which the parameters of the symbolic model can be uniquelyidentified. The set of such ob-
servations may be a primary candidate for sufficient domain knowledge to provide an AI-based
model with the claim of generality. A more thorough theoretical investigation is nonetheless
called for here to convincingly prove the existence of such SDK for incrementally nonlinear
models. One can imagine a proof alluding to series expansionof C(σ, S, ε̇/||ε̇||) in terms of
ε̇/||ε̇|| and attempting to achieve relations similar to those in Eq. (2), a detailed examination of
which is, however, beyond the scope of this article.

It is also worth mentioning that a symbolic constitutive model such as the one in Eq. (1),
still remains more general compared to AI-based models in that it provides the possibility of
rearranging stress and strain increments into new control/response conjugate sets, similar to the

†Note that the foregoing discussion is only a crude and incomplete presentation of incrementally nonlinear
models that nevertheless serves to convey the main points. Similar behaviors to those presented in Fig. 2(d)
can be produced by common incrementally bilinear elastoplastic models that are often considered to be
incrementally linear within their so-called tensorial zone.

Journal of Machine Learning for Modeling and Computing



A Note on Applicability of Artificial Intelligence to Constitutive Modeling 165

boundary conditions applied for strain-controlled triaxial tests where the incremental control pa-
rameters are vertical strains and horizontal stresses. A trained ANN, on the other hand, does
not provide the possibility of such crossovers among input and output layers. Nevertheless, this
shortcoming is not crucial, mainly because ANN models are almost never used as standalone
entities and are instead oftentimes implemented into finite-element or other numerical solvers
which formulate the mechanical response as strain-driven processes and any imposed stress re-
quirement is achieved through proper iteration loops.

4. INCORPORATING FORMALISM INTO AI-BASED MODELS

As mentioned earlier, the size of a sufficient knowledge domain does not reflect the amount
of observation required for training an AI-based model, which is exactly due to its lack of a
formalism. In the absence ofa priori structure, the number of model parameters to be optimized
in an AI-based model (e.g., neurons’ weight in the case of ANNs) is significantly larger than the
number of calibration parameters in an equivalent symbolicmodel. As such, more observations
are naturally required for the AI-based model to achieve, orat least approach, unique trained
values.

The natural question then arises as to whether the AI-based model can be endowed with some
of the characteristics that originate from having a formalism, or, in other words, whether the
AI-model can be predisposed witha priori physical knowledge of the intended behavior, such
as frame indifference, isotropy, and first-order homogeneity with respect to strain increments.
Taking the case of ANNs, three different methods can be envisaged in order to encode such
information into the AI-based model.

4.1 Artificial Expansion of Training Data

As a common approach already introduced in Lefik and Schrefler(2003), this method expands
the original training data in order to restrain, through brute force, the ANN to conform with the
intended criteria of the formalism. For instance, given an initial set of training data, the isotropy
of the trained ANN can be imposed by conjoining the initial set with its rotated counterpart:

Initial training set
Isotropy
−−−−→ Expanded training set

{σ(q), S(q), σ̇(q), ε̇(q)} →
{

{σ(q), S(q), σ̇(q), ε̇(q)}, {QT
σ

(q)Q, S(q),QT
σ̇
(q)

Q,QT
ε̇
(q)

Q}
}

,

(4)

whereQ is a rotation tensor. The number of different rotations to beconsidered in order to
ensure the accuracy of a model is studied in Ling et al. (2016).

The same can be applied to ensure first-order homogeneity with respect to strain/stress in-
crements, i.e., the training set can be extended to include linearly scaled input data:

Initial training set → Expanded training set

{σ(q), S(q), σ̇(q), ε̇(q)} →
{

{σ(q), S(q), σ̇(q), ε̇(q)}, {σ(q), S(q),ασ̇(q),αε̇(q)}
}, (5)

with α > 0 being a scaling factor. One of the the drawbacks of the data augmentation method
is the ensuing “black box” problem, leading to emergence of redundant weights in the neural
network (Worrall et al., 2017).
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4.2 Imposing Physics-Based Symmetries

Some properties pertaining to inherent symmetries of the constitutive models can be encoded
into ANNs by properly modifying the input and output training data. In particular, in order to
ensure isotropy and frame indifference, simply an invariant form of the training stress/strain
data can be used, which axiomatically secures isotropy (Lefik and Schrefler, 2003; Ling et al.,
2016). The increased accuracy and efficiency of the neural network in this method, however,
comes at the expense of higher computational costs (Worrallet al., 2017). A similar though more
involved method can be adopted for anisotropic materials whose behavior can be described in
terms of more joint invariants of a stress, strain, and structural anisotropy matrix through a proper
representation theorem. Incorporating such symmetries inANNs via invariant representation is
discussed in detail in Cohen and Welling (2016) and Worrall et al. (2017) among others, mainly
in the context of image, video, and audio recognition. However, the main ideas can be readily
translated to materials modeling applications. Along a similar line, Xu et al. (2020a) showed
how symmetries pertaining to the positive definiteness of a constitutive model can be accounted
for in a neural network.

4.3 A Priori Structured ANNs

The last and more interesting method to encode formalism into ANN is to predispose the ANN
with a structure that resembles the symbolic formalism. Here we quickly approach the edge of
barely charted territories in theoretical studies of neural networks. In principle, such a back-
ground provides insight regarding the behavior of systems which can be coherently encoded
into ANNs through a so-called “knowledge distilling” process (Hinton et al., 2015; Tartakovsky
et al., 2018). Alternatively, the method of graph partitionneural networks (Liao et al., 2018) can
be used to mimic a flow of intermediary variables similar to the represented symbolic consti-
tutive model. A primitive scheme of such partitioned networks can look like Fig. 3, where the
ANN can be imagined as a collection of connected sub-networks that are structured according to
the flow of information in a generic elastoplastic constitutive model, with the training procedure
being carried out for the global network. The flow of information among the partitions can now
be predetermined and excluded from training procedure. An interesting instance can be found in
the recent work of Masi et al. (2020), where the ANN has been predisposed by an internal struc-
ture so as to ensure thermodynamic requirements. A more detailed assessment of such methods
and their applications involves technicalities that fall well beyond our current purview.

5. THE ROLE OF CONSTITUTIVE MODELING IN THE AGE OF AI ‡

If we accept the potency of AI in auspiciously representing the constitutive behavior of materials,
then why do we need our precious elegantly forged symbolic theoretical models? Time and
again the question has been brought up in discussions with colleagues in the field of constitutive
modeling, and justifiably so since the same question is beingencountered in many other fields
as AIs rapidly take over functions that have traditionally been considered to be the sacred realm
of conceptual model building.

Here we delve back into Levins’s concept of trade-off among precision, realism, and general-
ity. In this context, the current state of AI-based models has eyes only for the precision; from an

‡This section is motivated by a conversation of the first author with Professor James Jenkins (Cornell
University) during a recent Lorentz Center meeting in Leiden, The Netherlands.
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FIG. 3: (a) Structure of a typical elastoplastic constitutive model. (b) Structured ANN where each compo-
nent of the constitutive model is represented by a subnetwork.

AI point of view, as long as the predictions are correct, we can dispose with the other two com-
ponents for all practical purposes. The concern is perhaps more aptly framed as the dichotomy of 
comprehension and competence given in Dennett (2009). Put in this context, the AI modeling is 
depicted as “competence without comprehension,” which mirrors, to a good extent, the sacrifice 
of realism and generality in favor of precision, as Levins puts it.

It is no secret that human intelligence has lost the battle on precision front to artificial intel-
ligence. Even on the constitutive modeling front, the studies show that ANN models not only 
outperform the symbolic models in precision, but they also exhibit more robustness as well as 
an easier implementation into finite element and other numerical solvers (Lefik and Schrefler, 
2003; Shin and Pande, 2000). Other black-box models–based time series analysis are also shown 
to be capable of capturing the details of geomaterial behaviors that fall beyond the reach of con-
ventional symbolic constitutive models (Small et al., 2013).

From such a perspective, it transpires that the future of theoretical constitutive modeling 
studies lies in producing comprehension about the nature of mechanical behaviors rather than 
quantitative results. At the risk of being proven wrong over time, we believe that those con-
stitutive models aiming at explaining and understanding the underlying behaviors, rather than 
producing more accurate results with feeble formalism would be those that retain their relevance 
over time. Instances of such comprehension-oriented models are the micromechanical constitu-
tive models that are often predicated upon microvariables that cannot be directly measured and 
calibrated, and as such, their quantitative predictive efficacy has always been their Achilles heel 
when compared against more traditional models (Pouragha and Wan, 2018). However, the re-
markable explanatory power of such micromechanical approaches provides a great deal of what 
can be deemed as deeper comprehension of the overall behavior of materials.

In the field of geomaterials, the advent of discrete element methods and their counterpart 
multiscale theories have, over the past few decades, greatly contributed to better understanding 
of physical processes that govern the stress-strain response of soils by interconnecting the many 
macroscopic facets of continuum mechanics to each other through their mutual microscopic un-
derpinnings. Such comprehension-oriented models produce knowledge that can be employed, 
at the lowest level, in feature engineering of ANNs, while at higher levels they can provide the 
a priori information necessary for predesigning the internal structure of ANNs. Interestingly,
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the reverse is also true, whereby ANNs can be employed to better bridge between micro- and
macroscale properties. Recent studies indeed demonstratethe potency of machine learning tech-
niques in pinpointing relevant macrolevel physics (Rudy etal., 2017), as well as recognizing
prominent microscopic variables (such as local time and length scales) to be considered dur-
ing the homogenization and localization procedures (Mozaffar et al., 2019; Peng et al., 2020;
Vasilyeva et al., 2020; Wang and Sun, 2018).

In the end, it seems that the future of constitutive modelinginvolves a continuous dialogue
between the comprehension obtained from theoretical constitutive modeling and the quantitative
competence of AIs, for, as Levins put it, “understanding is not achieved by generality alone but
by a relation between the general and the particular” (Levins, 1966).

6. CONCLUSION

With the ever-increasing appeal of artificial intelligencemethods in the field of geotechnical
modeling, the current study undertakes the timely task of exploring the inherent potentials of
AI-based models, such as ANNs, to represent a constitutive model in its entirety. Notwithstand-
ing their ad hoc nature, we investigated the possibility of AI-based models to have a claim
of generality similar to that of symbolic models. By introducing the concept of sufficient do-
main knowledge, we demonstrated that generality of an AI-based representation of a constitutive
model can indeed be achieved for incrementally linear models, with possible extensions sketched
for incrementally nonlinear models.

Finally, the quantitative competence of AI-based models iscontrasted with the comprehen-
sion-oriented outcome of theoretical constitutive models, whereby better knowledge and more
accurate models are expected to form in a dialogue between the two counterparts.
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