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Cokriging is a flexible tool for constructing surrogate models on the outputs of computer models. It can readily in-
corporate gradient information, in which form it is named gradient-enhanced Kriging (GEK), and promises accurate
surrogate models in >10 dimensions with a moderate number of sample locations for sufficiently smooth responses.
However, GEK suffers from several problems: poor robustness and ill-conditionedness of the surface. Furthermore it is
unclear how to account for errors in gradients, which are typically larger than errors in values. In this work we derive
GEK using Bayes’ Theorem, which gives an useful interpretation of the method, allowing construction of a gradient-
error contribution. The Bayesian interpretation suggests the “observation error” as a proxy for errors in the output
of the computer model. From this point we derive analytic estimates of robustness of the method, which can easily be
used to compute upper bounds on the correlation range and lower bounds on the observation error. We thus see that
by including the observation error, treatment of errors and robustness go hand in hand. The resulting GEK method is
applied to uncertainty quantification for two test problems.
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1. INTRODUCTION

The goal of surrogate modeling is to construct an accurate and cheap approximation of the output of an expensive
computer model, over a large parameter space, using as few observations of the full model as possible. Surrogate
models are useful for a variety of applications, e.g., global optimization, uncertainty quantification, data assimilation,
and model updating. The availability of derivatives of the output with respect to the parameters has the potential to
reduce the cost of building surrogates considerably [1]. Adjoint versions of computer models, which return derivatives
of a single scalar output with respect to any number of input parameters at constant cost [2], make the use of gradient
information especially attractive for high-dimensional parameter spaces [3–6].

A promising framework for surrogate modeling using gradients is gradient-enhanced Kriging (GEK); a special
case of Cokriging in which the covariables are the derivatives of the primary variable, and the gradient relationship
is established using a specific form of the variogram.1 While functional, GEK has several issues that can make it
unreliable in practice: (1) It is not clear how to include gradient errors in GEK, that is, how to include the intrinsic
errors of the computer simulations; (2) the numerical positive-definiteness of the gain influences the robustness of the
analysis; and (3) the computational cost of a GEK analysis can be significant.

Using a Bayesian formulation of GEK, we propose solutions to the first two problems. The third problem is mainly
due to the computational cost of estimating the hyperparameters [8], however this is beyond the scope of the present
work—it has been treated in related work [9, 10] and is the subject of future research. Let us have a closer look at the
first two problems:

First, gradients from computer models have potentially high levels of error [3, 4]. If this error is not accounted for
when building the surrogate, an oscillatory response results. Whereas Kriging can regress observed values, until now

1Both Kriging and radial basis functions can be considered as special cases of support vector regression [7].
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it has been unclear how the errors in the observed gradients should be modeled in GEK. Our contribution here is to
derive GEK in a Bayesian framework, given which the gradient error is seen to be an “observation error” occurring in
the observation-likelihood term, and therefore is appropriately modeled using the “likelihood.” Given an estimate of
gradient error, this allows us to build surrogate models with variable-quality gradients (see Section 2).

The second serious issue with GEK is robustness. A critical step in the algorithm is the inversion of the gain matrix
generated from the variogram (denotedA

def= R + HPHT in the following), for which a Cholesky factorization is
commonly used. This operation is succeptable to floating-point round-off errors, and regularly fails whenA has
small eigenvalues. We develop a new analytic estimate for the smallest eigenvalue ofA in the case of GEK, and
by requiring that this estimate is greater than the machine epsilonεmachine, we obtain constraints on the variogram
correlation range, and the observation error. For example, we conclude that if the observation error is greater than
roughly

√
εmachine, thenA is numerically invertable for all correlation ranges (see Section 3).

With insight into these two problems, GEK can be implemented in a robust manner and becomes a practical tool.
It is demonstrated as such for two uncertainty quantification applications.

A Matlab implementation of the GEK method described in this paper is available online at our web site: aerodyna-
mics.lr.tudelft.nl/∼bayesiancomputing.

1.1 Background of Kriging

Kriging was proposed independently in the field of geology by [11] and in the field of meteorology by [12], as a
means of spatially interpolating sparsely sampled observations. It is equally well-suited to interpolation in general
parameter spaces, in which context it is useful for optimization, and as a general-purpose surrogate model. A detailed
account on the origins of Kriging is given by [13], while a complete overview is provided by [14] and [15]. A popular
implementation of Kriging is provided by the Matlab ToolboxDACE [16]. A recent development for extremely large
data sets is fixed rank Kriging [17].

In the present work we advocate regressing the output of computer models, which are often noisy, especcialy
in the case of gradient information. In general we claim that primary interest typically lies, not in a perfect surro-
gate of an imperfect computer model, but in prediction (with error estimates) of a real process. Although usually the
output of a computer code might well be considered free of noise [18], this approach becomes problematic when
including gradient information: The gradient information might be considerably noisy due to off-design conditions,
“difficult” physics like shocks regions [4], or approximation techniques [3]. Therefore the question arises how to treat
noisy data in Kriging. In Kriging’s original application as a predictor of mineral ore grades, ores such as gold would
be found in small nuggets: a “nugget effect” appeared as a granularity-scale discontinuity within a homogeneous
field [11].2 This nugget effect is the result of the superposition of several structures of different scales known as a
“gigogne structure,” such that:“In a general way, all nugget effects are reflections of a transition structure, the di-
mensions of which are considerably exceeded by the working scale: the details and the characteristics of this prior
[microscale] structure have long since ceased to be perceptible, and the larger scale has barely preserved a single
parameter—the nugget constant—which gives a kind of overall undifferentiated measure of the ’intensity’ of this hid-
den structure.”[19]. This concept of a gigogne structure in the variogram is present in the work of Khintchin, Wold,
and Kolgomorov [20–22]. Accordingly, Cressie considers a nugget constantc0 > 0 due to microscale variations,
however, he also points out that for an experimental variogram where“... continuity is expected at the microscale,
the only reason forc0 > 0 is measurement error”[13]. Cressie’s distinction between nonsmooth fields with mi-
croscale variations and smooth fields with observation errors is crucial. The presence of observation errors has been
discussed in the work of Wiener, Gandin, Thompson, Henderson, and recently by Wikle and Berliner [12, 23–26].
The modifications of Kriging suitable for modeling experimental noise are also suitable for modeling discretization
error and modeling discrepancy. Although these errors are not random like experimental noise (an example of aleatory
uncertainty), they are unknown (epistemic uncertainty), and our lack of knowledge can be represented as a probability
distribution.

2Confusingly, when matrix regularization is required for numerical stability, the small diagonal added to the gain matrix is also
known as a “nugget.”
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Gradient information can be incorporated into the method in two ways: (1) assuming gradient observations and
value observations are colocated, one can construct new artificial value observations by linear extrapolation over a
distanceδξ. This is usually done in each coordinate direction at each observation. Standard Kriging is then applied to
this extended dataset. This approach—known as indirect GEK—is simple, but is sensitive to the choice ofδξ, results
in very ill-conditioned gain matrices for smallδξ, and cannot consider observation errors [4, 27, 28]. Therefore we
consider the second approach: (2) including the gradient as a covariable in Cokriging (see Section 2.2).

Combining error estimates and gradient information in Cokriging is challenging, as the interpretation of several
elements of Cokriging is unclear; see the discussion in [29] and [30]. A critical question is, what is the most appro-
priate way to represent observation errors? This question can be clarified by formulating the problem in a Bayesian
framework. Several Bayesian derivations of Kriging have been made [31–36], and a particularly clear presentation is
that of [26]. In this last reference we find a clear distinction between the variogram and the observation error: The var-
iogram is the covariance of the Bayesian prior, while the observation errors are contained in the likelihood. As such,
the observation errors are clearly not part of the variogram. With this simple distinction between prior and likelihood
the Bayesian framework enables us to treat observation errors in gradient-enhanced Kriging (Section 2.2).

In Fig. 1 we have classified works on Kriging according to three criteria: the conventional statistical or Bayesian
framework, the treatment of gradients, and the treatment of observation errors. To our knowledge there is no existing
work that combines a treatment of errors and gradients. Although we presently consider the robustness of Cokrig-
ing, we note that the theoretical results developed for the strict positive-definiteness and condition number ofAc

also apply to standard Kriging. Furthermore, an operation closely related to simple Kriging is the analysis step in a
Kalman filter [26, 37], where “Kalman gain regularization” or “covariance regularization” can be necessary for ma-
trix inversion [38]. Another related technique is kernel dimension reduction, where a “regularization term” is required
to enable matrix inversion. Importantly [39] “are not aware of theoretically justified methods of choosing these pa-
rameters; this is an important open problem.” We observe that in both cases the present approach of estimating the
robustness analytically could readily be applied in order to improve understanding of these regularization methods.

1.2 Application: Efficient Uncertainty Quantification

Our motivation for the above-described developments of GEK is to be able to perform efficient uncertainty quantifica-
tion. Parameters of physical problems almost always have some epistemic uncertainty associated with them—usually

(Co)Kriging

conventional

statistical

no gradients

no errors [11, 12, 14, 16, 18]

errors nugget

gradients

no errors [4, 6, 27, 28, 40]

errors –

Bayesian

no gradients

no errors [31, 33, 34]

errors [26, 32, 35]

gradients

no errors [8]

errors present

FIG. 1: References to literature on different Kriging and GEK techniques.
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represented as a probability density function (pdf). It is desirable to know what the consequent uncertainty is in the
model output, and to determine this with as few runs of the model as possible. Efficient existing approaches—such as
polynomial chaos and probabilistic collocation—use high-order polynomial interpolations of the model response [40–
44]. They are susceptible to oscillations for noisy model observations, and scale poorly to high dimensions. A GEK
surrogate offers an alternative approach, using gradients from adjoint solves [1–3, 5, 45–47] to be efficient in high
dimensions. Here, we show how GEK can be used in a way that incorporates the gradient error information.

2. DERIVATION OF KRIGING WITH GRADIENTS AND ERRORS

In simple Krigingwe assume that the hyperparameters—the mean, variance, and correlation range contained in the
prior—are known [14, 48]. As can be seen in Fig. 1, various Bayesian derivations of Kriging have been made, however,
a particularly clear Bayesian derivation of Kriging has been made by [26]. We extend this derivation tosimple GEK,
where we express the relation between the values and gradients in the prior covariance matrix. We then extend the
method toordinary GEKby making maximum likelihood estimates of the hyperparameters [31].

Presently we consider a normally distributed likelihood. This is adequate if our information on an observation is
limited to a value and standard deviation [49]. We assume that the prior is also normally distributed, and we find the
parameters of this distribution from maximum likelihood estimates. In the case that one has more detailed information,
this can of course result in a non-normally distributed likelihood and prior [50].

2.1 Conventional Derivation of GEK

According to [4, 6, 7, 27, 28] one can consider a Gaussian process:

y(ξ) = µ + Z(ξ), (1)

with meanµ and parameterξ. The GEK predictor for this Gaussian process is given by

ŷc(ξ) = µc + ψT
c Ψ−1

c (y − µc), (2)

whereψc andΨc can be generated from a correlation function. More details of this approach and of the ”indirect”
GEK approach can be found in [4, 7, 27, 28].

In the conventional approach the observations are considered to be exact. However, the results of an expensive
computer simulation often have significant errors. Typically, the errors in the gradients are larger than the errors in the
values [3, 4]. This is not accounted for in the conventional GEK predictor.

2.2 Bayesian Derivation of One-Dimensional GEK

Along the lines of [26] we are interested in then discrete valuesx, for which we assume the normal prior distribution

x ∼ N (µ,P ). (3)

For simple Kriging, meanµ and covariance matrixP are considered known. We observeN = n − 1 valuesy, a
subset ofx. The observations have the normal likelihood

y|x ∼ N (Hx, R), (4)

given a known observation matrixH (with Hx a subset ofx) and observation error covariance matrixR. Applying
Bayes’ Theorem,

p(x|y) =
p(y|x)p(x)

p(y)
, (5)

the posterior mean is given by [26, 51–53]

E(x|y) = µ + K(y −Hµ), (6)
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while the posterior covariance is given by

var(x|y) = (I −KH)P , (7)

where we have the gain matrix
K

def= PHT (R + HPHT )−1. (8)

ThenE(xn|y) andvar(xn|y) are the simple Kriging estimates for a valuexn given the observationsy [14]. Note that
to this point, the derivation is independent of the number of dimensions.

We now depart from [26] by including gradients and considering the one-dimensional case, i.e., each valuex
is supplemented with one gradientx;ξ, where the subscript; ξ indicates a partial derivative with respect to a single
parameterξ (the number of parameters determines the dimensionality). In the case of 1-dimensional GEK we are now
interested in the2n compiled (notation:c) valuesxc = [x,x;ξ]. Along the lines of Eqs. (3)–(8) we find the posterior
mean:

E(xc|yc) = µc + Kc(yc −Hcµc), (9)

while the posterior covariance is given by

var(xc|yc) = (I −KcHc)Pc, (10)

with gain
Kc

def= PcH
T
c (Rc + HcPcH

T
c )−1. (11)

ThenE(xc,n|yc), var(xc,n|yc), E(xc,2n|yc), andvar(xc,2n|yc) are the one-dimensional GEK predictors for the val-
ues and gradients, respectively.

2.2.1 The Error Covariance Matrix

The objective of this derivation was to include the value and gradient errors. The Bayesian perspective makes clear
that these belong in the likelihood. Specifically, the matrix

Rc =




ε2
1

ε2
2

. . . 0
ε2

N

ν2
1

ν2
2

0
. . .

ν2
N




, (12)

contains all individual random observation errorsεi andνi, of the values and the gradients, respectively. The user can
specify or optimize for these errors, as is illustrated in the test problems in Sections 4.1 and 4.2, respectively.

2.2.2 Approximate Covariance Function

Instead of defining the covariances throughf(ξ) we will use an approximate covariance function. Consider the lag
hij

def= |ξj − ξi| and estimate
Pij

def= P (ξi, ξj) = r(hij). (13)

In the following we apply the Gaussian covariance function:

r(hij) = σ2exp

(
− h2

ij

2θ2

)
, (14)

with correlation rangeθ and varianceσ2.
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2.2.3 The Covariance between Values and Gradients

Up till now we have been treating the values and the gradients as independent quantities. We will now see what relation
we would actually like them to have and express this relation in the prior covariance. In one-dimensional GEK, the
prior covariance matrix

Pc =
(

P 00 P 10

P 01 P 11

)
, (15)

contains the following submatrices:P 00 is the covariance matrix of the values,P 11 is the covariance matrix of the
gradients, andP 01 andP 10 are the cross covariances (such that lower indices are for the different samples and upper
indices are for the submatrices). Various derivations of these submatrices in a conventional framework can be found,
see for example [6, 7, 27, 28]. More recently a concise derivation in the context of Gaussian random fields has been
given [54], which fits directly in the Bayesian framework and gives

P 00
ij = r(hij),

P 10
ij = − ∂

∂h
r(hij),

P 01
ij =

∂

∂h
r(hij),

P 11
ij = − ∂2

∂h2
r(hij). (16)

With these approximations we can construct the prior covariance matrix, given in (15), which completes our Bayesian
derivation of simple one-dimensional GEK.

2.3 Example: One-Dimensional GEK with Observation Errors

Consider the following simple test function:

x(ξ) = sin(πξ),
x;ξ(ξ) = π cos(πξ). (17)

As can be seen in Fig. 1, various Bayesian derivations have been made, however, a particularly clear Bayesian deriva-
tion of Kriging has been made by [26]. We extend this derivation tosimple GEK, where we express the relation
between the values and gradients in the prior covariance matrix. We then extend the method toordinary GEK by
making maximum-likelihood estimates of the hyperparameters [31]. We consider the test function onξ ∈ [−1, 1]. We
assume that the prior meanµ = 0, the prior varianceσ2 = 0.5, and the prior correlation rangeθ = 0.5 are known.
We sample the test function at three nodes, with an observation error ofε = 0.2 andν = 0.2.

If we only sample the function values, we find the surrogate model shown in Fig. 2(a). Note that due to the
observation error the error band—given by the square root of the diagonal entries ofvar(x|y) (7)—is not zero at the
sample locations. If we sample both the values and the gradients, we find the surrogate model in Fig. 2(b). We see
that after including the gradient information the surrogate model resembles the function more closely, while the error
band is reduced significantly.

2.4 Extension to Multidimensional GEK

The extension to multidimensional GEK is straightforward. The GEK predictor equations (9)–(11) are in fact inde-
pendent of the number of dimensions and remain unchanged.

However, for them-dimensional case withm parametersξ1, ξ2, . . . , ξm, each value is supplemented withm
gradients, which results in the(m + 1)N compiled observationsxc = [x,x;ξ1 , . . . , x;ξm ].
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FIG. 2: Simple Kriging and GEK surrogate models, obtained by sampling a test function. In (a) we only sample the
values, while in (b) we sample both the values and the gradients.

The prior covariance matrix is now given by

Pc =




P 00 P 10 . . . P m0

P 01 P 11 P m1

...
.. .

...
P 0m P 1m . . . P mm


 , (18)

with

P kl
ij =

∂2

∂ξk∂ξl
r(ξk,j − ξl,i). (19)

2.5 Estimating the Hyperparameters

We will now extend our derivation toordinary GEK. In this case we find estimate the values of the hyperparameters
µ, σ, andθ conditional on the observationsyc. Recall that theNc ×Nc matrix
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Ac
def= (Rc + HcPcH

T
c ). (20)

The standard approach to estimating the hyperparameters is to make a maximum likelihood estimate (MLE) [4,
31, 55–57]. With a prior beliefθ ∼ U(θmin,θmax), we maximize the log likelihood:

ln p(θ|µ, σ,yc) =
−Ncln(2π)− ln|Ac| − (yc − µc)T A−1

c (yc − µc)
2

+ constant, (21)

which is equivalent to minimizing

L(θ) = ln|Ac|+ (yc − µc)
T A−1

c (yc − µc), (22)

with respect toθ ∈ [θmin, θmax]. In the case of GEK the drift vectorfc hasN entries equal to 1 followed by zeros
for the remaining entries, furthermore the matrixA0 = σ−2Ac. Optimizing (22) for all hyperparameters can be
unattractive for a small number of observations, therefore one can instead optimize the concentrated likelihood [7] or
consider statistically normalized (i.e., zero drift) data and optimize the restricted likelihood [31, 58]. In Sections 4.1
and 4.2 we optimize the restricted likelihood; also, we consider a signal-to-noise ratio SNR= σ2/ε2 instead of
consideringσ2 andε2 separately, since in (8) and (11) it is only important to provide the correct relative error.

Due to the estimated hyperparameters we find some important changes in the posterior, as given in Eqs. (9)
and (10). The expression for the posterior mean (9) remains unchanged, while the posterior variance (10) should be
multiplied with the factor [57]

Nc − q

Nc − q − 2
=

Nc − 1
Nc − 3

, (23)

where for ordinary GEK the number of drift coefficientsq = 1, asµ is a scalar. We observe that these alterations
are quite significant for a small number of observationsNc. Note that these alterations are not accounted for in
conventional statistical Kriging, which for smallN leads to an underestimation of the variance of the prediction [36,
57].

3. ROBUSTNESS OF KRIGING AND GEK

It is well known that for largeN the Kriging gain matrix becomes increasingly ill-conditioned [59, 60]. Here we
quantify this effect and relate it to nonpositive definiteness of the gain matrixA, which leads to inaccurate solutions
of the linear systemA−1(y − µ).

Consider theN ×N gain matrix:
A

def= (R + HPHT ). (24)

In each iteration of the optimization of (22) with respect toθ, we have to evaluateln |Ac| andA−1(y − µ). We can
reduce the cost of these evaluations by making the Cholesky factorization:

A = UT U , (25)

with standard numerical routines (e.g.LAPACK). From this factorization we find

ln |A| = 2 ln |U |, (26)

and solve the triangular linear systems

UT v = (y − µ),
Uw = v, (27)

to find
A−1(y − µ) = w. (28)
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This approach has a limitation: to make a Cholesky factorization,Ac has to be strictly positive-definite.
Although in the application of Kriging the condition numberκ(A) is studied frequently [59, 60], we consider it

to provide a very pessimistic upper bound for the accuracy of the solution of (27), and we find that in most cases
the effect of the condition number is subordinate to the requirement ofA being strictly positive-definite. Therefore,
we focus on developing an analytical estimate of the conditions under whichA is strictly positive-definite. We will
restrict ourselves to uniform sampling on a one-dimensional grid. Also, we will restrict ourselves to a white noise
observation error in both the values and gradients.

3.1 Positive-Definiteness for Kriging

SinceA is real and symmetric, we will findA to be strictly positive-definite if all of its eigenvaluesλi are strictly
positive. Note that although a matrix may be analytically strictly positive-definite, it is not necessarily possible to
make a Cholesky factorization in finite precision arithmic. We are therefore interested inA beingnumericallystrictly
positive-definite, and require that all of its eigenvalues are larger than machine precisionεmachine.

We can approximate the discrete eigenvalue spectrum ofA by the continuous spectral density function [59]. The
smallesteigenvalue we can represent in this spectrum corresponds to thelargestwave number we can represent. On a
uniform grid with domain sizeL and spacing∆ξ this is:

kmax =
π

∆ξ
=

π(N − 1)
L

, (29)

which corresponds to the Nyquist frequency. Substitutingkmax from [59] we find

min [Λ(k)] =
ε2L

2π(N − 1)
+

θσ2

√
2π

exp
(
−π2θ2(N − 1)2

2L2

)
. (30)

We see that the lowest eigenvalue is always strictly positive, henceA is always strictly positive-definite. However,
recall that for a Cholesky factorization we require that the smallest eigenvalue is larger than machine precision:

ε2L

2π(N − 1)
+

θσ2

√
2π

exp
(
−π2θ2(N − 1)2

2L2

)
> εmachine. (31)

In Fig. 3(a) we plot the effect of these conditions, the numerical strict positive-definiteness ofA. This is an
example forN = 32 andσ = 1. We proceed to derive two sufficient conditions for numerical positive definiteness
from the two terms in (31).

First, we expectA to be numerically strictly positive-definite if

ε2 >
2π(N − 1)

L
εmachine, (32)

which is in fact the limit we encounter when moving from right to left in the upper part of Fig. 3(a), for a relatively
large correlation range ofθ/L = 1. In Fig. 3(b) we compare this estimate with numerical results. Note the distinct
increase in both the estimate and results when we move from double to single precision. This is another clear indication
that we should indeed consider the limit (31) as a numerical issue. Interestingly, this estimate resembles the correlation
matrix regularization termµDACEI which is applied inDACE [16]:

µDACE = (10 + N) εmachine, (33)

where inDACE L ≈ 1 due to normalization. However, note that where observation errors and matrix regularization
can both enhance robustness, the motivation for these two approaches is quite different.

Second, we expectA to be numerically strictly positive-definite if

θσ2

√
2π

exp
(
−π2θ2(N − 1)2

2L2

)
> εmachine. (34)

This is the limit we encounter when moving upward in the left part of Fig. 3(a), for a observation error ofε = 0. In
Fig. 3(c) we compare this estimate with numerical results.
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FIG. 3: (a) Numerical strict positive definiteness of the matrixA, (b) the minimum observation error for a relatively
large correlation rangeθ/L = 1, and (c) the maximum correlation range for zero observation error.
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3.2 Positive-Definiteness for GEK

One can apply the estimates (32) and (34) to GEK, as long as one takes into account that the derivative information
increases the Nyquist frequency [23], as is also illustrated in Fig. 2. Therefore, oneN should be replaced byNc, such
that

ε2 >

√
2π(Nc − 1)

L
εmachine, (35)

and
θσ2

√
2π

exp
(
−π2θ2(Nc − 1)2

2L2

)
> εmachine. (36)

The accuracy of these estimates is illustrated in Figs. 3(a) and 3(b).
It is now straightforward to arrive at a proposal for a robust implementation. In most cases, if an observation error

is included, the actual observation error (or “noise”) will be sufficiently large to satisfy (35). In special cases with
high-quality data, where neither (35) nor (36) is satisfied, one can ensure robustness by adding a synthetic error given
by (35) during the analysis.

4. UNCERTAINTY QUANTIFICATION FOR TWO TEST PROBLEMS

In Section 4.1 we consider the heat advection diffusion equation to illustrate how GEK mitigates the curse of dimen-
sionality as well as the effect of noisy gradients. In Section 4.2 we consider turbulent flow over an airfoil to illustrate
the MLE estimation of the amount of gradient noise.

The cost of the dual solve (relative to the primal solve) in terms of CPU time is found to depend on the type of
problem. Therefore, we consider it more informative to provide the cost in terms of number of solves. In both test
problems, we report the cost as the total number of solves, so for example a case with10 samples would lead to a cost
of 10 solves in the case of Kriging and to a cost of20 solves in the case of GEK.

4.1 The Heat Advection Diffusion Equation

Consider the one-dimensional heat advection diffusion equation:

T;t + Pe T;z − T;z;z = 0, (37)

for the temperatureT at the spatial positionz ∈ [0, 1] and timet. The boundary conditions and initial condition are

T (z = 0, t) = 1,

T (z = 1, t) = 0,

T (z, t = 0) = 1− z, (38)

while the Ṕeclet number is given by

Pe =
Z w

α
, (39)

with spatial domain sizeZ, convecting velocityw, and thermal diffusivityα. The Ṕeclet number is treated as the
piecewise linear interpolation of a finite number of uncorrelated random parameters, each with uniform distribution
Pei ∼ U(−4, 18). The quantity of interest is the steady-state midpoint temperatureTz=0.5. The random input distri-
bution ofPei results in a probability density function (pdf) for the outputTz=0.5: presently our aim is to compute the
skewness of this pdf with an accuracy of1%, with a105 sample Monte Carlo simulation as a reference.
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4.1.1 Discretization for Primal and Dual Solve

We discretize Eq. (37) with a second-order central difference scheme with first-order implicit time stepping, where
we note that time accuracy is not an issue here. As an example, the solutions for three different Péclet numbers on a
spatial grid size ofNz = 1024 are shown in Fig. 4(a).

Apart from the temperatureT0.5 we compute the gradientsT0.5;Pei
with respect to the Ṕeclet numbersPei. We

compute the gradients from an adjoint method with complex step derivatives [2, 4, 45–47]. This requires a dual solve
at approximately the same cost as the primal solve. The spatial convergence of both the value and gradient is illustrated
in Fig. 4(b). Already for small grids we see that we are in the exponential range, with second-order convergence.

4.1.2 Curse of Dimensionality

The number of solves required to compute the skewness of the output pdf with the target accuracy of1% increases
rapidly when we increase the number of random variables, an effect known as the curse of dimensionality. We expect
that this curse of dimensionality will be mitigated by the use of adjoint-based gradient information. However, first
we note that we observe substantial variability in the surrogates for both Kriging and GEK with respect to the choice
of Latin-hypercube sample points (LHS). To account for this variability, and extract meaningful trends, we construct
response surfaces based on100 different LHS designs.

For an increasing number of random variables, the cost for different LHS designs is summarized by the25%,
50%, and75% quantiles plotted in Fig. 5. For this tests case, generally, GEK is found to be cheaper (i.e., require less
solves) than Kriging. This effect becomes stronger when the number of random variables increases: for four random
variables, GEK is roughly twice as cheap as Kriging, using only some30 instead of60 solves.

4.1.3 Effect of Gradient Noise

A problem with GEK is that the gradient information can be quite noisy, causing oscillations in the surrogate model.
The amount of gradient noise can be quantified by the gradient SNR:

SNR =
var(y;ξ)

ν2
. (40)

For the case of three random variables, we add Gaussian noise to the gradients for different SNR levels. The results,
again summarized by the25%, 50%, and75% quantiles for different LHS designs, are shown in Fig. 6. In Fig. 6,
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FIG. 4: (a) Solutions of the one-dimensional heat equation for different Péclet numbers, circles indicateT0.5, and (b)
spatial convergence of the valueT0.5 and a gradientT0.5;Pe.
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FIG. 5: The number of solves required to compute the skewness with target accuracy, for an increasing number of
random variables. The results for Kriging and GEK are summarized by the25%, 50%, and75% quantiles for100
different LHS-designs.

FIG. 6: The number of solves required to compute the skewness with target accuracy, for an increasing gradient SNR.
The results for Kriging and GEK are summarized by the25%, 50%, and75% quantiles for50 different LHS-designs.
The upper dotted line is the cost of Kriging, the lower dotted line is the cost of GEK using noise-free gradients.

moving from right to left, we find different stages. At the far right, for roughly SNR> 100, we are considering
very accurate gradient information. There is no need to take gradient noise into account, and therefore both GEK-NE
(i.e., no estimated SNR) and GEK-LE (i.e., locally estimated SNR) are as cheap as GEK with noise-free gradients
(indicated by the lower dotted line). Then, at the intermediate stage of roughly10 < SNR< 100, we find that the cost
of GEK-NE starts to increase as the noisy gradient information starts to deteriorate the surrogate: around a SNR of50,
the GEK-NE is as expensive as Kriging (indicated by the upper dotted line). In this same10 < SNR< 100 stage, we
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find that GEK-LE can perform at a significantly lower cost, as it can efficiently regress the noisy gradient information
by incorporating the noise level. Note that a gradient SNR of100 (i.e., a10% error) is typical for complex applications,
see for example [3] Finally, at the stage of SNR< 10, we find that for extremely inaccurate gradient information, the
cost of both GEK-NE and GEK-LE can exceed the cost of Kriging. At such low SNR, the incorporation of the noise
level fails to result in a proper regression of the gradient information, although it is not clear why GEK-LE becomes
more expensive than Kriging. Even for these extremely low SNRs, GEK-LE is generally still cheaper than GEK-NE.

In the above case we knew the gradient SNR, which is not always the case. In the following section we illustrate
how we can estimate a unknown gradient SNR from the data.

4.2 Turbulent Flow around a DU96–W–180 Airfoil

In the second test problem, we consider the subsonic turbulent flow over a DU96–W–180 wind turbine airfoil. Details
of the airfoil are given in [61]. The quantity of interest is the lift-to-drag ratioCl/Cd. The angle of attack is1.45
degrees, while the Reynold’s number isRe = 2 × 106. The computational two-dimensional grid contains4 × 105

cells, while the average wall-y+ = 38.4. The lift and drag are computed in OpenFOAM, using the k-ε turbulence
model [62]. Figure 7 illustrates the turbulent kinetic energy of the flow around the airfoil.

We consider three random parameters in the k-ε turbulence model:C1, C2, andCµ. We select these three random
parameters for uncertainty quantification (UQ), because in a sensitivity analysis they showed the most pronounced
effect on the simulation results. The probability density distributions for these random parameters are found from an
uncertainty analysis of the k-ε turbulence model, and are shown in Fig. 8. We use a LHS design to sample the random
parameter space, after which we create Kriging and GEK surrogates that we use to find a cumulative density function
(cdf) for Cl/Cd.

FIG. 7: Turbulent kinetic energy around a DU96–W–180 airfoil, computed in OpenFOAM.
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In order to build the surrogates, we use a MLE to optimize for four hyperparameters simultaneously: the correlation
rangesθ1, θ2, θµ, and the gradient SNR. The gradient noise level is assumed to scale roughly with the (locally
dependent) solver residual. Note that we fix the (primary) value SNR to108, reflecting a high-quality simulation
result with a relative error that corresponds to the solver residual. The result of such a MLE optimization for a case
with 30 solves is illustrated in Fig. 9. Clearly, the MLE does not only give a suitable result for the correlation ranges,
but also for the gradient SNR. This illustrates that, if sufficient data are available, we can actually optimize for the
correlation ranges and the gradient SNR simultaneously.

The final objective of this UQ analysis is to find an accurate cdf for the lift-to-drag ratio at low cost. Figure 10
shows the resulting cdf’s for three different techniques—Kriging, GEK-NE, and GEK-LE—for an increasing number
of solves; GEK-NE does not take the estimated SNR into account, GEK-LE takes the MLE optimized (local) error
estimate into account. The black cdf is the reference cdf, obtained from224 samples. The gray cdf’s are the resulting
cfd’s for 10 different LHS designs. From Fig. 10 we see that for10 samples, the cdfs obtained from Kriging, GEK-NE,
and GEK-NE are inaccurate. For14 samples, the Kriging cdf’s are still inaccurate and the gradient information added
in the case of GEK-NE does not improve the results due to gradient noise; however, when we do take the gradient
noise into account GEK-LE improves the accuracy of the cdf’s. A similar effect can be seen for30 solves, although
here all three methods can be considered reasonably accurate.

In this test problem, we found that for the turbulent flow around the DU96–W–180 airfoil we can use a MLE to
optimize simulanously for the correlation ranges and the gradient-SNR. As a result, the UQ analysis becomes more
efficient: already for the case of14 samples the resulting cdf’s show an improved accuracy.

5. CONCLUSION

We make a Bayesian derivation of gradient-enhanced Kriging (GEK), in which we include individual error informa-
tion. In the Bayesian framework, the variogram and the relation between values and gradients is contained in the prior,
while the observation error is contained in the likelihood. The observations serve to update the Kriging prediction.

When considering robustness, our analytical estimates of strict positive-definiteness with respect to the gain com-
pare well to numerical results. The estimates of the conditions for strict positive-definiteness clearly show how the
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observation error improves this property. This formalizes previous observations that adding a small value to the diag-
onal of the variogram can improve robustness. However, note that presently the observation errors are contained in
the likelihood instead of in the variogram. The present analysis thus shows how inclusion of error information makes
GEK robust.

Apart from including gradient information and treating individual observation errors, we propose to improve the
Kriging process by taking into account the increase in the posterior covariance when making maximum likelihood
estimates of the hyperparameters.

GEK can act as a surrogate model for uncertainty quantification of a computational fluid dynamics (CFD) sim-
ulation. Future work will focus on two areas: (a) application of GEK to a CFD problem with a>16-dimensional
stochastic parameter space; and (b) reducing the cost of the GEK analysis.
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