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Stochastic Galerkin finite element discretizations of partial differential equations with coefficients characterized by arbi-
trary distributions lead, in general, to fully block dense linear systems. We propose two novel strategies for constructing
preconditioners for these systems to be used with Krylov subspace iterative solvers. In particular, we present a vari-
ation of the hierarchical Schur complement preconditioner, developed recently by the authors, and an adaptation of
the symmetric block Gauss-Seidel method. Both preconditioners take advantage of the hierarchical structure of global
stochastic Galerkin matrices, and also, when applicable, of the decay of the norms of the stiffness matrices obtained
from the polynomial chaos expansion of the coefficients. This decay allows to truncate the matrix-vector multiplications
in the action of the preconditioners. Also, throughout the global matrix hierarchy, we approximate solves with certain
submatrices by the associated diagonal block solves. The preconditioners thus require only a limited number of stiffness
matrices obtained from the polynomial chaos expansion of the coefficients, and a preconditioner for the diagonal blocks
of the global matrix. The performance is illustrated by numerical experiments.

KEY WORDS: stochastic Galerkin finite element methods, iterative methods, Schur complement method,
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1. INTRODUCTION

Precise values of coefficients in the setup of physical models using partial differential equations (PDEs) are often not
known. In such situations, the coefficients are typically treated as random variables or processes in attempt to quantify
uncertainty in the underlying problem. Probably the most popular and widely used class of methods for a solution
of these problems are the Monte Carlo techniques, because they require only solutions of the PDE for a given set
of realizations of the input random coefficients. These methods are well-known for their robustness, versatility, and
quite slow convergence. Therefore, in the last two decades, a significant effort has been devoted to the development of
methods that leverage regularity of the solution, and outperform the Monte Carlo methods at least for problems with
stochastic dimensions that are not too large. The most promising developments include the stochastic finite element
methods. There are two main variants of the stochastic finite elements: collocation methods [1, 2], and stochastic
Galerkin methods [3–5]. The first approach samples the stochastic PDE at a predetermined set of collocation points,
which yields a set of uncoupled deterministic systems. The solution at these collocation points is then used to inter-
polate the solution in the entire random input domain. Because extending legacy software to support the collocation
points is relatively simple, these methods are often regarded as non-intrusive. On the other hand, the second approach,
using the stochastic Galerkin methods, translates the stochastic PDE into one large coupled deterministic system.
Consequently, the Galerkin methods require a development of new solvers and therefore they are commonly regarded
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as intrusive. Since use of direct solvers for the stochastic Galerkin systems might be prohibitive due to their large size,
iterative solvers are often preferred. We then seek preconditioners to speed up convergence.

There are two main types of expansion of the random field representing the uncertainty in the coefficients of the
underlying model. The first one, known as Karhunen-Loève (KL) expansion [6], is suitable for a finite-dimensional
representation of Gaussian random fields, and leads in conjunction with the stochastic Galerkin finite element dis-
cretizations to block sparse structure of global matrices. Random fields with general probability distributions are also
sometimes represented using the KL expansion; however, it might be more suitable to use so-called generalized poly-
nomial chaos (gPC) expansion [7] for their representation. This in general leads to block dense structure of the global
matrices. In particular, in this paper we will focus on the random coefficients of the model elliptic PDE with lognormal
distribution. Such discretization is done within the gPC framework, using Hermite polynomials [8]. It has been shown
in [9, Theorem 18] that in order to guarantee a complete representation of the lognormal random field, one has to use
twice the order of polynomial expansion of the coefficient than of the solution, which indeed leads to a fully block
dense structure of the global stochastic Galerkin matrix. Clearly, based on the block sparsity pattern of the global
stochastic Galerkin matrix, a certain class of preconditioners might be more suitable, compared to the others, for a
particular problem to be solved.

Probably the most simple, yet quite powerful method is the mean-based preconditioner proposed by Pellissetti and
Ghanem [10] and analyzed by Powell and Elman [11]. It is a block diagonal preconditioner which uses the information
carried by the mean of the random coefficient and the corresponding stiffness matrix, i.e., the zeroth order term of the
coefficient expansion. Subsequently, Ullmann has developed a Kronecker product preconditioner [12], cf. also [13],
that makes use of information carried by higher order terms and improves the convergence quite significantly. The
preconditioner has the Kronecker product structure of the global stochastic Galerkin matrix. Various iterative methods
and preconditioners including multigrid methods, based on matrix splitting, were compared by Rosseel and Vande-
walle in [14]. Most recently, the authors have developed in [15] a hierarchical Schur complement preconditioner that
takes advantage of the recursive hierarchy in the structure of the global stochastic Galerkin matrix. We note that an
interesting approach to solver parallelization has been proposed by Keese and Matthies [16], and a block-triangular
preconditioner for the block sparse case has been proposed recently by Zheng et al. [17]. Finally, we refer to Ernst
and Ullmann [18] for a more general study of the stochastic Galerkin matrices.

In this paper, we propose two novel strategies for constructing preconditioners for solution of the linear systems
with block dense global matrices to be used with Krylov subspace iterative methods. In particular, we present a vari-
ation on the hierarchical Schur complement preconditioner developed recently by the authors [15], and an adaptation
of the symmetric block Gauss-Seidel method. Both preconditioners are built in a way to account for the recursive
hierarchy in the structure of the global stochastic Galerkin matrix. Because, unlike in the block sparse case, neither
of the submatrices in this hierarchy is block diagonal, we approximate solves with submatrices by the associated di-
agonal block solves. This variant yields versions of the two preconditioners, which will be called asapproximate. We
note that the approximate versions thus use “locally” the block diagonal preconditioning, which allows for a certain
level of decoupling. Our numerical experiments indicate that this approximation might not be necessarily traded off
for slower convergence rates. In the second variation, we take take advantage of the decay of the norms of the stiff-
ness matrices obtained from the polynomial chaos expansion of the coefficients. The decay of the matrices allows
to truncate the matrix-vector multiplications in the action of the preconditioners, and therefore these versions of the
preconditioners will be called astruncated. We also note that one can replace the direct solvers of the diagonal blocks
by iterative ones, possibly with the same tolerance as for the outer iterations. Doing so, the preconditioners become
variable and one has to make a careful choice of the Krylov iterative method used for the global (outer) iterations.
In general, it is recommended to use flexible methods such as the flexible conjugate gradients [19], FGMRES [20],
or GMRESR [21]. Thus neither the global matrix, nor the matrix of the preconditioner need to be formed explicitly,
and we can use the so called MAT-VEC operations introduced in [10] for all matrix-vector multiplications. Provided
that we have a preconditioner for the diagonal block solves available, the ingredients of our methods include only the
number of stiffness matrices from the expansion of the random coefficient. Therefore, the proposed methods can be
viewed as minimally intrusive because they can be built as wrappers around existing solvers for the corresponding
deterministic problem. Finally, we note that choice of a preconditioner for the diagonal block solves would not change
the convergence in terms of outer iterations, and we will address this topic elsewhere.
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The paper is organized as follows. In Section 2 we introduce the model problem and its discretization, in Section 3
we discuss the structure of the stochastic Galerkin matrices, in Section 4 we formulate our algorithms, in Section 5
we present some numerical experiments, and finally in Section 6 we summarize and conclude our work.

2. MODEL PROBLEM

Let (Ω,F , µ) denote the probability space associated with a physical experiment. We are interested in the solution of
the stochastic linear elliptic boundary value problem, with stochastic input and deterministic data, given in a bounded
domainD ⊂ Rd, d = 2, 3. The solution is a random functionu (x,ω) : D×Ω → R that almost surely (a.s.) satisfies
the equation

−∇ · (k (x, ω) ∇u (x, ω)) = f (x) in D × Ω, (1)

u (x, ω) = 0 on∂D × Ω, (2)

wheref ∈ L2 (D), the gradient symbol∇ denoting the differentiation with respect to the spatial variables, and

0 < kmin ≤ k (x, ω) a.s. inΩ, ∀x ∈ D.

The functionk (x, ω) : D×Ω → R is a random scalar field with a continuous and square-integrable covariance func-
tion. We will assume that the randomness ofk (x, ω) is induced by a set of random variablesξ (ω) = {ξi (ω)}N

i=1

that are assumed to be independent Gaussian with zero mean and unit variance. Thus the domain ofk (·,ω) is re-
stricted to the subset(Ω,F (ξ) ,µ) of (Ω,F , µ) whereF (ξ) is theσ−algebra generated byξ. We will henceforth use
k (x, ξ) instead ofk (x, ω), and the solutionu (x, ω) can be also written asu (x, ξ).

In the variational formulation of problem (1) and (2), we consider the solution of the equation

u ∈ U : a (u, v) = 〈f, v〉 , ∀v ∈ U. (3)

whereU is a tensor product space defined as

U = H1
0 (D)⊗ L2 (Ω) , ‖u‖U =

√
E

[∫

D

|∇u|2 dx

]
,

whereE [·] denotes mathematical expectation, and the bilinear forma (·, ·) along with the right-hand side are defined
as

a (u, v) = E
[∫

D

k (x, ξ) ∇u · ∇v dx

]
, 〈f, v〉 = E

[∫

D

f v dx

]
.

We assume thatk (x, ξ) can be represented, using a generalized polynomial chaos (gPC) expansion, as

k (x, ξ) =
M ′∑

i=0

ki (x) ψi (ξ) , whereki (x) =
E [k (x) ψi (ξ)]

E [ψ2
i ]

, (4)

and{ψi (ξ)}M ′

i=0 is a set ofN -dimensional Hermite polynomials [5]. Similarly, we will look for an expansion of the
solution as

u (x, ξ) =
M∑

i=0

ui (x)ψi (ξ) , (5)

that converges inL2 (Ω×D) asM → ∞. We will, in particular, modelk (x, ξ) as a truncated lognormal process.
To this end, letg (x, ξ) = g0 (x) +

∑N
i=1 ξigi (x) be a truncated Karhunen-Loève expansion of a Gaussian process

defined onD with known meang0 (x) and covariance functionCg (x, y), i.e.,gi (x) are weighted eigenfunctions of
∫

D

Cg (x, y) ϕi (y) dy = λiϕi (x) , ∀x ∈ D, and gi (x) =
√

λiϕi (x) . (6)
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Thenk (x, ξ) is defined ask (x, ξ) = exp [g (x, ξ)]. The procedure for computing the coefficientski (x) in (4) has
been derived by Ghanem in [8]. Denotingηj = ξj − gj , the coefficients are precisely given, cf. [8, eq. (33)], as

ki (x) =
E [ψi (η)]
E [ψ2

i ]
exp


g0 (x) +

1
2

N∑

j=1

(gj (x))2

 . (7)

According to [9], in order for (4) to guarantee a complete representation of the lognormal random field, the order
of polynomial expansion ofk (x, ξ) in (4) should be twice the order of the expansion of the solutionu (x, ξ) in (5).
Denoting the two orders of the polynomial expansions ofu (x,ξ) andk (x,ξ) asP andP ′, resp., withP ′ = 2P , the
total numbers of the gPC polynomials are

M + 1 =
(N + P )!

N !P !
, M ′ + 1 =

(N + P ′)!
N !P ′!

=
(N + 2P )!
N ! (2P )!

. (8)

We will consider approximations to the variational problem (3) given by the finite element discretizations ofH1
0 (D).

The solutionu (x, ξ) from (5) will be thus approximated by

u (x, ξ) =
Ndof∑

i=1

M∑

j=0

uijφi (x) ψj (ξ) , (9)

where{φi (x)}Ndof

i=1 is a finite element basis, and{ψj (ξ)}M
j=0 is the basis of the Hermite polynomials described above.

Substituting the expansions (4) and (9) into (3) yields a deterministic system of linear equations

M∑

j=0

M ′∑

i=0

cijkKiuj = fk, k = 0, . . . , M, (10)

where(fk)l = E
[∫

D
f (x)φl (x) ψk dx

]
, (Ki)lm =

∫
D

ki(x)φl(x), φm(x) dx, and cijk = E [ψiψjψk]. Each
one of the blocksKi is thus a deterministic stiffness matrix given byki (x) of size Ndof × Ndof, whereNdof is
the number of spatial degrees of freedom. The system (10) is given by a global stochastic Galerkin matrix of size
(M + 1) Ndof × (M + 1) Ndof, consisting ofNdof ×Ndof blocksK(j,k), and it can be written as




K(0,0) K(0,1) · · · K(0,M)

.. .
... K(k,k)

...
.. .

K(M,0) K(M,1) · · · K(M,M)







u(0)

...
u(k)

...
u(M)




=




f(0)

...
f(k)

...
f(M)




, (11)

where each of the blocksK(j,k) is obtained as

K(j,k) =
M ′∑

i=0

cijkKi. (12)

We note that the first diagonal block is obtained by the0th order polynomial chaos expansion and therefore corre-
sponds to the deterministic problem obtained using the mean value of the coefficientk0. In particular,

K(0,0) = K0.

In the next section we discuss the structure of the global stochastic Galerkin matrix from (11) in somewhat more
detail.
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3. HIERARCHICAL STRUCTURE OF THE MATRICES

The stochastic Galerkin matrices have recently received quite a lot of attention; cf., e.g., [9, 14, 18]. The key role in
their block structure is played by the constantscijk and the upper bound of the summation in (12). In general, there
are two types of block sparsity patterns. The first type, typically regarded as block sparse, is associated with use of
only the linear termsξ1, . . . , ξN such as appearing in a Karhunen-Loève expansion ofk (x, ξ); cf. Fig. 1(b). The
second type, block dense, is associated with a general (nonlinear inξ’s) form of the expansion as in (4). We note that
due to our setup withP ′ = 2P , we obtain thatM ′ À M from (8), and the matrices are in general fully dense; cf.
Fig. 1(f). Recently, we proposed a preconditioner suitable for iterative solution of block sparse stochastic Galerkin
systems [15]. Here, we will focus on a design of preconditioners for more general, block dense, linear systems.

The structure of the global stochastic Galerkin matrix can be understood through knowledge of the coefficient

matrix cP with entriescP (j, k) =
∑M ′

i=0 cijk wherej, k = 0, . . . ,M , and the value ofM follows from the fact that
we use theP th order polynomial expansion; cf. (8). In general, let us consider some`th order polynomial expansion,
such that1 ≤ ` ≤ P. It is easy to see that the corresponding coefficient matrixc` will have a hierarchical structure,

c` =
[

c`−1 bT
`

b` d`

]
, ` = 1, . . . , P, (13)

wherec`−1 are the first principal submatrices corresponding to the the(`− 1)th order polynomials expansion. We
note that even though the matricesc` are symmetric, the global stochastic Galerkin matrix in (11) will be symmetric
only if each one of the stiffness matricesKi is symmetric. Clearly, all matricesKi will have the same sparsity pattern.

In either case, the block sparse or the block dense, the linear system (11) can be written as

AP uP = fP , (14)

where the global Galerkin matrixAP has the hierarchical structure, cf. Fig. 3(a), given as

A` =
[

A`−1 B`

C` D`

]
, ` = P, . . . , 1, (15)

and A0 = K0 is the matrix of the mean. Although for the model problem (1) and (2) it holds thatC` = BT
` ,

for ` = 1, . . . P , we will use the general notation of (15) for the sake of generality.
Alternatively, let us consider a hierarchical splitting of the matrixAP , cf. Fig. 3(b), as

AP =




D0 F0

.. .
. . .

E` D` F`

. . .
.. .

EP DP




. (16)

The blocksD`, ` = 1, . . . , P , are the same in (15) and (16), and we have also, for convenience, denotedD0 = A0.
The decomposition (15) has served as a starting point for thehierarchical Schur complement preconditioner

in [15], and we will use the decomposition (16) to formulate thehierarchical block symmetric Gauss-Seidel pre-
conditioner. Since we are interested here only in the preconditioners that areblock andsymmetricwe will drop the
two words for brevity as this shall not cause any confusion. We only note that in the numerical experiments section we
compare a variant of thehierarchicalGauss-Seidel method with the block (non-hierarchical) Gauss-Seidel method,
and the usual (row) Gauss-Seidel method is not considered here at all.

In this paper we make an assumption that it is possible to factorize, e.g., by the LU-decomposition, the diagonal
blocks of the global stochastic Galerkin matrix or, at least, that we have a preconditioner readily available.
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4. APPROXIMATE AND TRUNCATED HIERARCHICAL PRECONDITIONERS

In the block sparse case, the matricesD` are block diagonal, as in Fig. 1(b). However, considering the underlying
coefficientk as a random field with lognormal distribution, all of the matricesD` are block dense, as in Fig. 1(f). The
word approximatewill refer to the fact that we will approximate the (inverses of the) matricesD` by (inverses of)
their diagonal blocks in the action of our preconditioners. Next, a global matrix-vector multiplication in an iterative
solver can be performed using formula (12); i.e., one needs to store only the constantscijk and the matricesKi for
the so-called called MAT-VEC operations [10]. Here, we are interested in preconditioners that would rely only on
the MAT-VEC operations as well. The top panels in Fig. 2 show a decaying trend of the norms of matricesKi with
increasing indexi. This indicates, with respect to the structure of the coefficientscijk, that the lower order terms in the
generalP ′th order expansion might dominate, depending on thecoefficient of variationCoV , over the higher order
terms; cf. lower panels in Fig. 2. Now, the idea is totruncate, i.e., selectively drop some of the matricesKi from the
MAT-VEC operations in the action of the preconditioner. There are two possible strategies of this truncation.

First, thestandard truncationis defined as follows. Let̀t be maximal order of the polynomial expansion that we
would like to include in the MAT-VEC operations. Then, we define the degree of truncationMt ≤ M ′ as

Mt + 1 =
(N + `t)!

N ! `t!
, (17)

and the matricesKi, for all i = 0, . . . , Mt are included in the MAT-VEC operations.
Alternatively, in theadaptive truncationwe select matricesKi that a priori satisfy certain criteria, e.g., such that

their norm is greater than a given threshold. This is computationaly slightly more demanding because it requires
finding and bookkeeping a subset of matricesKi wherei ∈Mt ⊆ {0, . . . , M ′}; however, for higher values ofCoV ,
or in the case of a non-monotonous decay of the matricesKi, this might be the preferred truncation strategy.

The algorithm of the truncated block matrix-vector multiplication (tMAT-VEC) is precisely defined as follows:

Algorithm 1. [tMAT-VEC]
The truncated MAT-VEC multiplicationw = P`v is performed as

w(j) =
M∑

k=0

∑

i∈Mt

cijkKiv(k), (18)

wherej, k are suitable subsets of{0, . . . , M} selecting blocks of the global Galerkin matrix to be multiplied with,
and the truncation is defined by a setMt ⊆ {0, . . . ,M ′} selecting the matricesKi for the MAT-VEC operation.

The notationP` used in Algorithm 1 will correspond in Algorithms 2 and 3 to eitherB`, C`, E`, orF`, and it will
denote the corresponding truncated variants of the block matrix-vector multiplications by the blocksB`, C`, E`, orF`

from (15) and (16). We note that the full MAT-VEC operation is obtained by setting`t = P ′ in (17) so thatMt = M ′.
Next, let us introduce some additional notation. Considering (15), problem (14) can be rewritten as

[
AP−1 BP

CP DP

] [
uP−1

P

uP
P

]
=

[
fP−1

P

fP
P

]
, (19)

which motivates the following notation for a vectorx`, where` = 1, . . . , P , cf. Fig. 3, as

x` =
[

x`−1
`

x`
`

]
, or x` =




x(0)

...
x(`)


 . So thenx`−1

` =




x(0)

...
x(`−1)


 , andx`

` = x(`). (20)

Note thatx(0) = x0
1 = x0, and we will also for brevity denotex` = x(0:`). We are ready to formulate now the two

preconditioners. First, we recall the algorithm of the hierarchical Schur complement preconditioner (hS) from [15,
Algorithm 5]. Then, we formulate the algorithm of the hierarchical Gauss-Seidel preconditioner (hGS).
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(a) `t = 0, M ′ = 0, nnz =70, nMV = 70 (b) `t = 1, M ′ = 4, nnz =350, nMV = 350

(c) `t = 2, M ′ = 14, nnz =1070, nMV = 1210 (d) `t = 3, M ′ = 34, nnz =1990, nMV = 2610

(e) `t = 4, M ′ = 69, nnz =3090, nMV = 4980 (f) `t = 8, M ′ = 494, nnz =4900, nMV = 12,585

FIG. 1: Block sparsity structures of the coefficient matricescP with entriesc(j,k) =
∑M ′

i=0 cijk, wherej, k =
0, . . . ,M andM + 1 = (N + P )!/N !P !. HereN = P = 4, so the size of all the matricescP is M + 1 = 70,
andM ′ + 1 = (N + `t)!/N !`t!, where`t is different in each panel. The colors indicate number of summations in a
position(j, k), nnz is the number of nonzero coefficients in the matrixcP , andnMV is the total number of summations
(=MAT-VEC operations).
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CoV = 50% CoV = 150%
FIG. 2: Norms of theM ′+1 = 495 stiffness matrices (top panels) in the representation of the lognormal random field
usingN = 4 random variables and polynomial expansion of orderP ′ = 8, and the decadic logarithm of the weighted
coefficient matrix where in each position(j, k) the coefficient is obtained as weighted sums

∑494
i=0 cijk × norm (Ki)

for two coefficients of variationCoV = 50% (left panel) andCoV = 150% (right panel). The decay of norms
of the matricesKi illustrated by the top panels motivates the truncation of the MAT-VEC operations introduced in
Algorithm 1, which is used in the construction of the truncated preconditioners defined in Algorithms 2 and 3. In
particular, the construction is guided by the weighted sums illustrated by the lower panels.

(a) hierarchical Schur complement preconditioner (b) hierarchical Gauss-Seidel preconditioner

FIG. 3: Structure of the stochastic Galerkin matrix (15) and of the hierarchical Schur complement preconditioner
from Algorithm 2 (left panel), and the structure of the hierarchical Gauss-Seidel preconditioner from Algorithm 3
(right panel). Both panels also illustrate the structure of vectors introduced in equation (20).
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Algorithm 2. [Hierarchical Schur complement preconditioner (hS)]
The preconditionerMhS : rP 7−→ vP for system (14) is defined as follows:for ` = P, . . . 1,

split the residualr`, based on the hierarchical structure of matrices, as

r` =
[

r`−1
`

r`
`

]
, (21)

compute the pre-correction as
g`−1 = r`−1

` − B`D−1
` r`

`. (22)

If ` > 1, set
r`−1 = g`−1. (23)

Else (if ` = 1), solve the systemA0v0 = g0.

end for ` = 1, . . . P ,

compute the post-correction, i.e., setv`−1
` = v`−1, solve

v`
` = D−1

`

(
r`
` − C`v

`−1
`

)
, (24)

and concatenate

v` =
[

v`−1
`

v`
`

]
. (25)

If ` < P, setv`
`+1 = v`.

end

Algorithm 3. [Hierarchical Gauss-Seidel preconditioner (hGS)]
The preconditionerMhGS : rP 7−→ vP for system (14) is defined as follows:
set the initial solutionuP and update it in the following steps,

v(0) = D−1
0

(
r(0) −F0v(1:P )

)
, (26)

for ` = 1, . . . P − 1,

v(`) = D−1
`

(
r(`) − E`v(0:`−1) −F`v(`+1:P )

)
, (27)

end
v(P ) = D−1

P

(
r(P ) − EP v(0:P−1)

)
, (28)

for ` = P − 1, . . . 1,

v(`) = D−1
`

(
r(`) − E`v(0:`−1) −F`v(`+1:P )

)
, (29)

end
v(0) = D−1

0

(
r(0) −F0v(1:P )

)
. (30)

In our implementation, we initializeuP = 0 in Algorithm 3. Then the multiplications ofF`, ` = 0, . . . , P − 1, by
this zero vector will vanish from (26)–(27). This also reduces the computational cost of the MAT-VEC operations.

We have already mentioned that theapproximatevariants of the two preconditioners are obtained by replacing the
solves with the blocksD`, ` = 1, . . . , P , by the corresponding diagonal block solves; cf. the right panel of Fig. 4.
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FIG. 4: Block sparsity structure of the hierarchical Schur complement preconditioner from Algorithm 2 (left panel),
and the block sparsity structure of the approximate hierarchical Gauss-Seidel preconditioner derived from Algorithm 3
(right panel). Both preconditioners are also truncated, setting`t = P ; cf. Fig. 1(e).

4.1 Computational Cost Considerations

In order to compare the computational cost of the preconditioners, we first recall two common solution algorithms
against which comparisons will be discussed. First, let us define matricesGα, α = 0, . . . , M ′, using the coeffi-
cientscijk as

Gα = cαjk, j = 0, . . . ,M, k = 0, . . . , M.

Let the symbol⊗ denote the Kronecker product. The mean-based preconditioner [10, 11] is defined as

Mmb = diag(G0)⊗A0. (31)

Next, let us define a matrix

G =
M ′∑

α=0

tr
(
AT

αA0

)

tr
(
AT

0 A0

)Gα.

The Kronecker product preconditioner [12] is defined as

MK = G⊗A0 = (G⊗ INdof) (IM+1 ⊗A0) =
(
IM+1 ⊗A−1

0

) (
G−1 ⊗ INdof

)
. (32)

The multiplication of
(
IM+1 ⊗A−1

0

)
by a vector is essentially the same as an application of the mean-based precon-

ditioner, and an efficient implementation of
(
G−1 ⊗ Indof

)
is described in [22]. We can immediately see from (31) that

the mean based-preconditioner requiresM +1 solves with the matrixA0 of size(Ndof ×Ndof), and from (32) that the
Kronecker product preconditioner requires in additionNdof solves with the matrixG of size((M + 1)× (M + 1)),
which requiresO

(
Ndof × (M + 1)2

)
operations if a Cholesky decomposition ofG is available. Both of our approx-

imate hierarchical preconditioners require 2(M + 1) solves with the diagonal blocks of the global Galerkin matrix,
and a certain number of matrix-vector multiplications with stiffness matricesKi. The number of these multiplications
depends on the degree of truncation of the MAT-VEC operations, and it is denoted bynz (cijk) in Tables 5 and 6.
Clearly, the Kronecker product preconditioner is very efficient if (i) it is possible to obtain a Cholesky decomposition
of G, and (ii) the number of spatial degrees of freedomNdof is not too large. Moreover, it was assumed in [11, 12]
that a solve withA0 can be performed inO (Ndof) operations using a multigrid solver. However, in situations when
the multigrid solver is not suitable or the size of the discretized spatial problem is too large, the question of selecting
block solvers becomes much more delicate. For example, we might even consider “inner” Krylov iterations for the
solves with the diagonal blocks. The preconditioner would thus become variable and we would also need to make
a careful choice of the Krylov iterative method used for the global (“outer”) iterations. Our initial experiments with
such choice were successful, and the present work is the first step in the development of such solvers.
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5. NUMERICAL EXPERIMENTS

We have implemented the stochastic Galerkin finite element method for the model problem (1)–(2) on a two-dimensio-
nal domain with dimensions[0, 1] × [0, 1] uniformly discretized by10 × 10 Lagrangian finite elements. The mean
value of the lognormal field was set toµlog = 1, the correlation lengthL = 0.5, and we have used the covariance
kernel in (6) as

Cg (x, y) = σ2 exp
(
−‖x− y‖1

L

)
, (33)

whereσ denotes the standard deviation of the underlying Gaussian field. In the experiments reported in Tables 1,
2, and 4 we have setσlog = 1, and so the coefficient of variationCoV = σlog/µlog = 100%. We have compared
convergence of the flexible conjugate gradients, the mean-based preconditioner (mb), the Kronecker product precon-
ditioner (K), the hierarchical Schur complement preconditioner (hS), the approximate hierarchical Schur complement
preconditioner (ahS), symmetric (block) Gauss-Seidel preconditioner (GS), and the approximate hierarchical Gauss-
Seidel preconditioner (ahGS). We note that in all cases we have observed essentially the same convergence of the
standard and flexible conjugate gradients [19]. We have also tested direct and iterative solvers, with the same toler-
ance as for the outer iterations, for the inner block solves. Our experiments indicate that the convergence in terms of
outer (global) iteration counts is not sensitive to the particular choice of inner block solves. The results are summa-
rized in Tables 1–6. First, we have compared the convergence using the preconditioners with no truncation, varying
either of the stochastic dimensionN , the order of polynomial expansionP , the coefficient of variationCoV or the

mesh sizeh, and keeping other parameters fixed. These results are, respectively, reported in Tables 1–4. Looking at

TABLE 1: Convergence of flexible conjugate gradients for the global matrixA obtained by
the gPC expansion of the lognormal field withCoV = σlog/µlog = 100%, andµlog = 1,
preconditioned by the mean-based preconditioner (mb), Kronecker product preconditioner (K),
hierarchical Schur complement (hS), approximate hierarchical Schur complement (ahS), block
Gauss-Seidel (GS). and approximate hierarchical block Gauss-Seidel (ahGS) preconditioners.
Polynomial degree is fixed toP = 4, and the stochastic dimensionN is variable. Here,ndof is
the dimension ofA, it is the number of iterations with the relative residual tolerance10−8, and
κ is the condition number estimate from the Lánczos sequence in conjugate gradients

Setup mb K hS ahS GS ahGS
N ndof it κ it κ it κ it κ it κ it κ

1 605 48 28.76 18 3.87 15 3.40 15 3.40 15 3.42 15 3.42
2 1815 61 37.16 32 10.10 16 3.62 27 8.06 17 3.75 16 3.45
3 4235 62 38.07 32 10.30 16 3.76 31 10.77 17 3.74 18 4.35
4 8470 66 43.65 37 13.60 16 4.17 38 15.28 19 4.29 19 4.74

TABLE 2: Convergence of flexible conjugate gradients for the global matrixA precondi-
tioned by the mean-based preconditioner (mb), Kronecker product preconditioner (K), hier-
archical Schur complement (hS), approximate hierarchical Schur complement (ahS), block
Gauss-Seidel (GS), and approximate hierarchical block Gauss-Seidel (ahGS) preconditioners.
Stochastic dimension is fixed toN = 4, and the polynomial degreeP is variable. The other
headings are the same as in Table 1

Setup mb K hS ahS GS ahGS
P ndof it κ it κ it κ it κ it κ it κ

1 605 15 3.50 14 2.44 7 1.39 11 1.76 8 1.39 8 1.31
2 18 28 8.95 21 4.74 10 1.93 16 3.04 12 1.97 11 1.76
3 4235 44 20.04 29 8.28 13 2.80 24 6.09 15 2.87 14 2.58
4 8470 66 43.65 37 13.60 16 4.17 38 15.28 19 4.29 19 4.74

Volume 4, Number 4, 2014



344 Soused́ık & Ghanem

TABLE 3: Convergence of flexible conjugate gradients for the global matrixA preconditioned by
the mean-based preconditioner (mb), Kronecker product preconditioner (K), hierarchical Schur
complement (hS), approximate hierarchical Schur complement (ahS), block Gauss-Seidel (GS),
and approximate hierarchical block Gauss-Seidel (ahGS) preconditioners. Stochastic dimension
and polynomial degree are fixed toN = P = 4, and the coefficient of variationCoV is variable.
The other headings are the same as in Table 1

Setup mb K hS ahS GS ahGS
CoV (%) it κ it κ it κ it κ it κ it κ

25 16 3.24 14 2.37 7 1.18 8 1.25 7 1.18 6 1.12
50 29 9.36 22 4.96 10 1.78 14 2.45 11 1.77 10 1.62
75 46 22.21 30 8.73 13 2.85 23 6.01 15 2.82 14 2.69
100 66 43.65 37 13.60 16 4.17 38 15.28 19 4.29 19 4.74
125 85 72.76 45 19.79 19 5.54 58 36.34 23 5.98 26 8.21
150 103 107.07 52 27.02 21 6.85 84 77.73 26 7.75 35 13.74

TABLE 4: Convergence of flexible conjugate gradients for the global matrixA preconditioned
by the mean-based preconditioner (mb), Kronecker product preconditioner (K), hierarchical Schur
complement (hS), approximate hierarchical Schur complement (ahS), block Gauss-Seidel (GS),
and approximate hierarchical block Gauss-Seidel (ahGS) preconditioners. Stochastic dimension
and polynomial degree are fixed toN = P = 4, the coefficient of variation isCoV = 100%, and
the mesh sizeh is variable. The other headings are the same as in Table 1

Setup mb K hS ahS GS ahGS
h ndof it κ it κ it κ it κ it κ it κ

1/5 2520 59 40.62 35 14.06 15 3.84 35 15.43 18 3.99 19 4.91
1/10 8470 66 43.65 37 13.60 16 4.17 38 15.28 19 4.29 19 4.74
1/15 17920 68 44.42 39 13.87 16 4.24 39 15.81 19 4.38 20 4.72
1/20 30870 69 44.89 39 14.07 17 4.25 40 16.23 19 4.37 20 4.78
1/25 47320 69 44.94 40 14.13 17 4.26 41 16.38 20 4.40 20 4.81
1/30 67270 71 45.11 40 14.04 17 4.26 41 16.38 19 4.37 20 4.75

the tables, we see that the hS preconditioner performs best, followed by the GS preconditioner. On the other hand, the
convergence of the ahS preconditioner quickly deteriorates, whereas the convergence of the aGS is quite similar to the
GS. In fact, it is quite interesting to note from Table 3 that the convergence of the ahS begins to deteriorate for values
of CoV > 25%; however, the aGS remains comparable to the GS preconditioner for values ofCoV at around100%.
From Table 4 we see that the dependence on the mesh sizeh is not very significant. Tables 5 and 6 contain results
obtained for variable coefficients of variationCoV and different truncation strategy of the MAT-VEC operations in
the action of the preconditioners, which is guided by the decay of the norms of the stiffness matricesKi obtained from
the finite element discretization of the generalized polynomial chaos expansion of the random coefficientk (x, ω);
cf. Fig. 2. Table 5 contains results obtained using thestandard truncation. First, we note that setting̀t = 0 yields
to use of only the matrixK0 in the action of the ahS, GS, and ahGS preconditioners. So the resulting precondition-
ers are in this case block diagonal and because they are symmetric, their application is the same as using twice the
mean-based preconditioner. On the contrary, the performance of the hS preconditioner might be slightly better even
with `t = 0, in particular for higher values ofCoV , but this is because the hS preconditioner performs solves with the
full submatricesD`. However, we can see that this does not correspondingly improve the convergence, and use of the
off-diagonal blocks seems to be warranted. Indeed, the convergence improves with more included into the MAT-VEC
operations in the action of all of the preconditioners. In particular, we see that for values ofCoV at around25% it
is sufficient to include only the five matrices corresponding to the linear terms of the coefficient expansion. On the
other hand, even for higher values ofCoV there seems to be no reason for the GS and aGS preconditioners to use the
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TABLE 5: Convergence of the flexible conjugate gradients for the global stochastic
Galerkin matrix preconditioned by the mean-based preconditioner (mb), Kronecker
product preconditioner (K), hierarchical Schur complement (hS), approximate hier-
archical Schur complement (ahS), block Gauss-Seidel (GS), and approximate hier-
archical block Gauss-Seidel (ahGS) preconditioners with a variable degree of trun-
cation of the MAT-VEC operations in the action of the preconditioner. Here`t is
the maximum polynomial order of the coefficient expansion used in the construction
of the preconditioner, so thatMt + 1 is the degree of truncation of the MAT-VEC
operations, i.e., the number of retained matrices,nz(cijk) is the number of nonzeros
in the truncated tensorcijk, it is the number of iterations with the relative residual
tolerance10−8, andκ is the condition number estimate from the Lánczos sequence
in flexible conjugate gradients

Setup hS ahS GS ahGS
`t Mt + 1 nz(cijk) it κ it κ it κ it κ

CoV = 25% ( mb: it = 16 κ = 3.24, K: it = 14 κ = 2.37 )
0 1 70 16 3.20 16 3.19 16 3.19 16 3.19
1 5 350 8 1.27 8 1.33 7 1.23 7 1.23
2 15 1210 7 1.21 8 1.25 7 1.20 6 1.17
3 35 2610 7 1.18 8 1.25 7 1.17 6 1.11
4 70 4980 7 1.18 8 1.25 7 1.18 6 1.12
8 495 12585 7 1.18 8 1.25 7 1.18 6 1.12

CoV = 50% ( mb: it = 29 κ = 9.36, K: it = 22 κ = 4.96)
0 1 70 28 8.90 28 8.99 28 8.99 28 8.99
1 5 350 14 2.54 15 2.83 14 2.54 14 2.54
2 15 1210 13 2.47 14 2.74 12 2.15 11 2.12
3 35 2610 10 1.79 14 2.44 10 1.68 10 1.69
4 70 4980 10 1.79 13 2.39 11 1.78 10 1.68
8 495 12585 10 1.78 14 2.45 11 1.77 10 1.62

CoV = 100% ( mb: it = 66 κ = 43.65, K: it = 37 κ = 13.60)
0 1 70 53 32.88 58 39.94 58 39.94 58 39.94
1 5 350 32 11.83 35 14.29 33 12.88 33 12.88
2 15 1210 32 12.31 35 15.13 28 9.35 29 10.05
3 35 2610 20 5.03 36 14.32 19 4.64 22 6.23
4 70 4980 20 5.24 32 11.92 19 4.55 20 5.33
8 495 12585 16 4.17 38 15.28 19 4.29 19 4.74
CoV = 150% ( mb: it = 103 κ = 107.067, K: it = 52 κ = 27.0203)
0 1 70 71 61.44 89 90.18 89 90.18 89 90.18
1 5 350 51 29.92 59 39.66 57 36.85 57 36.85
2 15 1210 51 30.18 60 42.06 46 24.26 50 27.53
3 35 2610 31 11.06 71 55.98 30 10.17 40 19.53
4 70 4980 32 12.05 58 38.08 28 9.42 34 13.86
8 495 12585 21 6.85 84 77.73 26 7.75 35 13.74

matrices obtained from the polynomials of higher order than the expansion of the solution; i.e., the computational cost
of these preconditioners can be reduced more than twice. Finally, Table 6 contains results obtained with theadaptive
truncation, where the toleranceτ has been set such that the matricesKi for which maxjk (cijk)× norm(Ki) < τ are
dropped from the MAT-VEC operations in the action of the preconditioners. As before, only a few matrices need to be
used in order to significantly improve the convergence. Moreover, it appears that setting the thresholdτ too low might
have a negative impact on the convergence of the ahS and ahGS preconditioners. In particular, rather surprisingly,
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TABLE 6: Convergence of the flexible conjugate gradients for the global stochastic
Galerkin matrix preconditioned by the mean-based preconditioner (mb), Kronecker
product preconditioner (K), hierarchical Schur complement (hS), approximate hier-
archical Schur complement (ahS), block Gauss-Seidel (GS), and approximate hier-
archical block Gauss-Seidel (ahGS) preconditioners with a variable degree of trun-
cation of the MAT-VEC operations in the action of the preconditioner. Hereτ is
the tolerance such that the matricesKi for which maxjk (cijk) × norm(Ki) < τ

are dropped from the MAT-VEC operations in the action of the preconditioner and
Nadapt is the number of retained matrices,nz(cijk) is the number of nonzeros in the
truncated tensorcijk, it is the number of iterations with the relative residual toler-
ance10−8, andκ is the condition number estimate from the Lánczos sequence in
flexible conjugate gradients

Setup hS ahS GS ahGS
τ Nadapt nz(cijk) it κ it κ it κ it κ

CoV = 25% mb: it = 16 κ = 3.24 K: it = 14 κ = 2.37
10 5 345 10 1.63 10 1.58 10 1.57 10 1.57
1 13 877 7 1.20 8 1.24 7 1.18 6 1.12

0.1 32 2057 7 1.18 8 1.24 7 1.17 6 1.12
0 495 12585 7 1.18 8 1.25 7 1.18 6 1.12

CoV = 50% mb: it = 29 κ = 9.36 K: it = 22 κ = 4.96
10 11 677 12 2.18 13 2.24 11 1.83 11 1.83
1 32 1958 11 1.91 13 2.25 11 1.77 10 1.62

0.1 86 4765 10 1.78 14 2.41 11 1.77 10 1.62
0 495 12585 10 1.78 14 2.45 11 1.77 10 1.62

CoV = 100% mb: it = 66 κ = 43.65 K: it = 37 κ = 13.60
100 2 92 54 34.95 63 47.94 65 51.28 65 51.28
10 25 1241 27 9.12 25 7.14 23 6.98 19 4.56
1 97 4731 18 4.48 33 12.29 19 4.55 18 4.10

0.1 219 8202 17 4.18 37 14.90 19 4.31 19 4.66
0 495 12585 16 4.17 38 15.28 19 4.29 19 4.74

CoV = 150% mb: it = 103 κ = 107.07 K: it = 52 κ = 27.02
100 10 336 66 50.22 68 48.84 70 50.68 70 50.68
10 55 2450 30 10.89 44 20.38 29 9.49 25 6.95
1 171 6338 23 7.00 73 59.57 27 7.98 32 11.48

0.1 313 9714 22 6.86 83 76.38 26 7.74 35 13.54
0.01 436 11741 21 6.84 84 77.69 26 7.75 35 13.72
0 495 12585 21 6.85 84 77.73 26 7.75 35 13.74

even with higher values ofτ the convergence of the truncated ahGS is comparable to the convergence of GS with no
truncation (settingτ = 0). We can in fact see that, e.g., for the values ofCoV equal to100% and150%, with value
τ = 10, the convergence of the ahGS is essentially the same as the convergence of the GS preconditioner with no
truncation.

6. CONCLUSION

We have proposed two novel strategies for constructing preconditioners for the iterative solution of the systems of
linear algebraic obtained from the stochastic Galerkin finite element discretizations. Our main focus was on a class
of problems with coefficients characterized by arbitrary distributions that generally yield fully block dense structure
of global stochastic Galerkin matrices. The preconditioners take an advantage of the hierarchical structure of these
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matrices. We have, in particular, examined variants of the hierarchical Schur complement preconditioner proposed
recently by the authors [15], and variants of the hierarchical block symmetric Gauss-Seidel preconditioner.

The first variant, called anapproximate, replaces solves with submatrices by the associated diagonal block solves.
This variant thus combines the global Gauss-Seidel method with “local” block-diagonal preconditioner, which allows
decoupling of blocks, and introduces a possibility for a parallelization in an implementation. Numerical experiments
with our model problem indicate that whereas the performance of the approximate version of the hierarchical Schur
complement preconditioner deteriorates with the increasing values of the coefficient of variation, the convergence of
the approximate hierarchical Gauss-Seidel preconditioner is quite comparable to the (non-hierarchical) block Gauss-
Seidel preconditioner for the values of the coefficient of variation equal up to100%.

The second variant, calledtruncated, is based on a truncation of the sequence of block matrix-vector multiplica-
tions, called MAT-VEC operations, used in the action of the preconditioners. The truncation can be performed using
either a standard or adaptive strategy, based on the monotonicity in the decay of the stiffness matrices, and further alle-
viates the computational cost of the preconditioners. Our numerical experiments indicate that truncation, in particular
with adaptive strategy, might not be necessarily traded off for slower convergence rates.

We have therefore proposed two strategies that are combined for optimal performance. One strategy introduces
decoupled diagonal block solves, and the other reduces the overall computational cost associated with the action of a
preconditioner. Considering that a multiplication of a vector by the global stochastic Galerkin matrix in each iteration
of a Krylov subspace method is, of course, performed by the full MAT-VEC multiplication with no truncation, in
particular the truncated version of the approximate hierarchical Gauss-Seidel preconditioner thus offers an appealing
combination of good convergence rates and a reasonable computational cost.
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