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In this work, we develop Gaussian process regression (GPR) models of isotropic hyperelastic material

behavior. First, we consider the direct approach of modeling the components of the Cauchy stress

tensor as a function of the components of the Finger stretch tensor in a Gaussian process. We then

consider an improvement on this approach that embeds rotational invariance of the stress-stretch

constitutive relation in the GPR representation. This approach requires fewer training examples and

achieves higher accuracy while maintaining invariance to rotations exactly. Finally, we consider

an approach that recovers the strain-energy density function and derives the stress tensor from this

potential. Although the error of this model for predicting the stress tensor is higher, the strain-energy

density is recovered with high accuracy from limited training data. The approaches presented here

are examples of physics-informed machine learning. They go beyond purely data-driven approaches

by embedding the physical system constraints directly into the Gaussian process representation of

materials models.

KEY WORDS: Gaussian process regression, hyperelastic materials, physics-informed
machine learning

1. INTRODUCTION

Machine learning models have seen an explosion in development and application in recent years
due to their flexibility and capacity for capturing the trends in complex systems (Hastie et al.,
2016). Provided with sufficient data, the parameters of the model may be calibrated in such a
way that the model gives high fidelity representations of theunderlying data generating pro-
cess (Raissi et al., 2017; Jones et al., 2018; Frankel et al.,2019a,b). Moreover, computational
capabilities have grown such that constructing deep learning models over datasets of tens of
thousands to millions of data points is now feasible (Dean etal., 2012). There remain, however,
many applications in which the amount of data present is insufficient on its own to properly
train the machine learning model. This may be due to a prohibitively large model that requires
a correspondingly large amount of data to train and where training data is expensive to acquire.
Furthermore, even with a wealth of data, it is possible that the machine learning model may yield
behavior that is inconsistent with the expected trend of themodel when the model is queried in
an extrapolatory regime.

In such cases it is appealing to turn to a framework that allows the incorporation of physi-
cal principles and othera priori information to supplement the limited data and regularize the
behavior of the model. This information can be as simple as a known set of constraints that the
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regressor must satisfy, such as positivity or monotonicitywith respect to a particular variable, or
can be as complex as knowledge of the underlying data-generating process in the form of a par-
tial differential equation. Consequently, the past few years have seen great interest in “physics-
constrained” machine learning algorithms within the scientific computing community (Brunton
et al., 2016; Jones et al., 2018; Lee and Carlberg, 2020; Linget al., 2016; Lusch et al., 2018;
Pan and Duraisamy, 2018; Raissi and Karniadakis, 2018). Theoverview paper by Karpatne et al.
(2017) provides a taxonomy for theory-guided data science,with the goal of incorporating sci-
entific consistency in the learning of generalizable models. Much research in physics-informed
machine learning has focused on incorporating constraintsin neural networks (Ling et al., 2016;
Jones et al., 2018), often through the use of objective/lossfunctions that penalize constraint
violation (Magiera et al., 2020).

In contrast, the focus in this paper is to incorporate rotational symmetries directly and exactly
into Gaussian process (GP) representations of physical response functions. This approach has the
advantages of avoiding the burden of a large training set that comes with a neural network model,
and the inexact satisfaction of constraints that come with penalization of constraints in the loss
function. There has been significant interest in the incorporation of constraints into Gaussian
process regression (GPR) models recently (Bachoc et al., 2019; Da Veiga and Marrel, 2012;
Jensen et al., 2013; López-Lopera et al., 2018; Raissi et al., 2017; Riihimäki and Vehtari, 2010;
Solak et al., 2003; Yang et al., 2018). Many of these approaches leverage the analytic formula-
tion of the GP to incorporate constraints through the likelihood function or i.e. the covariance
function.

In this paper, the task of learning the six components of a symmetric stress tensor from the
six components of a symmetric stretch tensor is formulated through a series of transformations
so that it becomes a regression task of learning three coefficients that are a function of three
invariants of the problem. The main contribution of this paper is the extension of GPR to enforce
rotational invariance through a tensor basis expansion.

The paper is organized as follows: Section 2 presents an overview of constitutive models
for hyperelastic materials. Sections 3 and 4 present GPR andthe extension to a tensor basis GP,
respectively. Section 5 presents a further extension of thetensor-basis GP to handle the strain
energy potential. Section 6 provides results for a particular hyperelastic Mooney–Rivlin material,
and Section 7 provides concluding discussion.

2. HYPERELASTIC MATERIALS

A hyperelastic material is a material that remains elastic (nondissipative) in the finite/large strain
regime. In this context the fundamental deformation measure is the 3× 3 deformation gradient
tensorF:

F =
∂x

∂X
, (1)

which is the derivative of the current positionx with respect to positionX of the same material
point in a chosen reference configuration. In an Eulerian frame (in an inertial frame from which
the tensors are measured), the Finger tensorB,

B = FFT , (2)

is the typical finite stretch measure, which is directly related to the Almansi strain, which mea-
sures the total deformation that a material has undergone relative to its initial configuration. Note
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that this tensor is symmetric positive definite, as its eigenvalues are equal to the relative changes
in length along principal axes, and negative lengths are notpossible. [The choice of the Finger
tensor is not limiting in terms of the generality of this formulation, given the equivalence of
strain measures provided by the Seth–Hill (Hill, 1968) and Doyle–Ericksen (Doyle and Erick-
sen, 1956) formulae.] The deformation of a hyperelastic material requires an applied stress state,
associated with a certain amount of energy, to arrive at thatdeformed state. For a hyperelastic
material, the stress is solely a function of the current stretch (or strain) of the material. Hence, the
major goal of material modeling of hyperelastic materials is to construct constitutive relations
between the kinematic variableB and the corresponding dynamic variable, the 3× 3 Cauchy
stress tensor

σ = f(B) =
2

|B|1/2
B
∂Φ

∂B
, (3)

which for a hyperelastic material is given by the derivativewith respect to all the tensor compo-
nents of a potential, namely the strain energy densityΦ, and|B| is the determinant of the Finger
tensor. Without additional arguments such as a structure tensor, this formulation is appropriate
for isotropic hyperelastic materials. For further detailsplease consult Malvern (1969), Ogden
(1997), and Gurtin (1982).

Typical approaches to model these relations seek semiempirical formulations for the strain
energy density with some parameters to be fit, which are then fit to experimental data. An ex-
ample of this type of formulation will be discussed in a latersection. In this work we consider
nonparametric modeling of hyperelastic material responses.

3. GAUSSIAN PROCESS REGRESSION

GPR provides a nonparametric model for a response function given an input set of training data
through a Bayesian update involving an assumed prior distribution and a likelihood tying the
posterior distribution to observed data. We denote a GP prior for a functionf by

f ∼ GP(0,K), (4)

where we assume the GP has a nominal mean of 0, without loss of generality, and is described
by a covariance functionK. We adopt the commonly employed squared-exponential covariance
function:

K(x, x′) = θ1 exp
(

−θ2|x− x′|2
)

, (5)

which has a scale parameterθ1 and a (inverse-square) length parameterθ2.
A GP is defined such that any finite collection of realizationsfrom the process are governed

by a multivariate normal distribution. That is, for any set of observed realizationsX and predic-
tion pointsX∗ with corresponding function valuesf(X) andf(X∗), the probability distribution
p(f(X∗), f(X)|X∗,X) is given by

[

f(X)

f(X∗)

]

= N
([

0

0

]

,

[

K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

])

, (6)

where it is understood that the vectors and matrices presented are given in block form for mul-
tiple instances inX andX∗. GPR uses a GP as a prior over the function space for the data-
generating process, and predictions proceed through the use of Bayes’ rule. Upon observation
of some initial set of noisy data pointsy = y(X) ∼ N (f(X), ε2), whereε2 is the variance of
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Gaussian noise in the function values, the probability distribution of the values of the GP atX
may be determined by forming the (posterior) conditional distribution ofp(f|y,X):

p(f|y,X) = p(y|f)p(f|X)
p(y|X) =

p(y|f)p(f|X)
∫

p(y|f)p(f|X)df , (7)

wheref = f(X) and the Gaussian likelihood is given by

p(y|f) =
N
∏

i=1

1√
2πε2

exp

[

− (yi − fi)
2

2ε2

]

. (8)

The push-forward posterior distribution for predictions at a new set of pointsX∗ has the follow-
ing analytical solution:

f∗ = f(X∗)|X, y,X∗ ∼ N
[

K∗(K+ ε2I)−1y, K∗∗ − K∗(K+ ε2I)−1K∗T
]

, (9)

whereI denotes the identity matrix,K = K(X,X), K∗ = K(X∗,X), andK∗∗ = K(X∗,X∗).
Then the predictive mean of the distribution at any new pointsX∗ is given by

E[y∗|X, y,X∗] = K∗(K+ ε2I)−1y, (10)

and the predictive variance, assuming the same noise level,is given by

V[y∗|X, y,X∗] = K∗∗ − K∗(K+ ε2I)−1K∗T + ε2I, (11)

wherey∗ = y(X∗). This result shows the combination of uncertainty in the prediction due to
epistemic uncertainty in the mean process (the first two terms on the right side) plus the aleatoric
uncertainty of inherent variability in the measurements (the last term on the right side). In this
work, although we will work with noiseless data, we assume a value ofε2 = 10−10 in order to
regularize the inversion of the covariance matrix.

The task that dominates the computational expense in constructing this model is the inver-
sion of (K + ε2I), or, equivalently, the solution of the linear system based on (K + ε2I) for
either the mean or variance evaluations. SinceK is dense, the scaling is typicallyO(N3) for
N training points. This limitation constrains GPR to at mostN = 10,000 since memory and
computation time become prohibitive, although for this work we found thatN = O(100) was
sufficient to reach reasonable accuracy, as will be shown later. Nominally the matrix is symmet-
ric positive semidefinite, which enables efficient solutionby Cholesky decompositions, although
ill-conditioning is frequently an issue, especially for large dataset sizes. Ill-conditioning requires
adding a nugget or large noise (ε ≫ 1) term to the covariance matrix to regularize the solution,
using pseudoinverses via the singular value decompositionof the covariance matrix, or other
greedy subset selection to reduce the matrix size.

It appears at first glance that the variance in Eq. (11) is nominally independent of the actual
point valuesy, and only depends on the locations of the selected data pointsX. This is true for a
fixed covariance function; however, we are typically interested in changing the GP hyperparame-
ters to maximize the accuracy of the GP while balancing the model complexity. Traditionally, this
is managed by tuning the hyperparameters to optimizep(y|X), which is the marginal-likelihood
of the GP, and is frequently called the “model evidence.” Equivalently, we may optimize the
logarithm of the model evidenceL = log p(y|X) for numerical stability reasons:

L = −1
2
yT
(

K+ ε2I
)−1

y − 1
2
log |K+ ε2I| − N

2
log 2π. (12)
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That is, we choose to tune the covariance hyperparametersθ1 andθ2 in Eq. (5) in order to max-
imize L. It is worth noting that solving this optimization problem requires multiple inversions
of a dense covariance matrix, further increasing the cost ofperforming the inference. Further
discussion of this approach can be found in Rasmussen and Williams (2006).

4. TENSOR BASIS GAUSSIAN PROCESS

In this section we show how the standard GPR described in the previous section may be adapted
to enforce rotational invariance through a tensor basis expansion. We call this formulation a
tensor basis Gaussian process (TBGP).

4.1 Tensor Basis Expansion

We consider the generic hyperelastic constitutive model ofthe form

σ = f(B), (13)

which, for any given analytic tensor valued functionf , may be expanded in an infinite series in
terms ofB with fixed coefficients̄cn:

σ =
∞
∑

n=0

c̄nB
n. (14)

Note thatB is symmetric, positive definite, and hence has a complete eigenbasis. Furthermore,
it is clear thatσ andB are coaxial, (i.e., have the same eigenbasis), due to the fact that we are
considering an isotropic material. Since the tensors of interest are symmetric and of size 3× 3,
the Cayley-Hamilton theorem states that the tensorB satisfies its corresponding characteristic
polynomial

B3 − I1B
2 + I2B− I3I = 0, (15)

where we have defined the tensor invariants

I1 = tr(B) = λB1 + λB2 + λB3,

I2 =
1
2

[

tr(B)2 − tr(B2)
]

= λB1λB2 + λB2λB3 + λB3λB1, (16)

I3 = det(B) = λB1λB2λB3,

so-called because they are invariant under similarity transformations (i.e., rotations) ofB. Here,
λB1, λB2, andλB3 are the eigenvalues ofB, which are also a complete set of invariants. The
theorem can be used as a recursion relation to write all powers ofB higher than 2 in terms of
I, B, andB2 with coefficients that depend on the invariants and the unknown c̄i. Rather than
seeking to identify the infinite number of fixed coefficientsc̄i for a given constitutive relation,
our task reduces to finding the three coefficients in the series expansion

σ = c0(I1, I2, I3)I+ c1(I1, I2, I3)B + c2(I1, I2, I3)B
2, (17)

whereci is a function of the invariants; this notation will be suppressed for the remainder of this
work for clarity.
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One issue in many machine learning models of constitutive relations is that they do not
always preserve rotational objectivity; that is, rotatingthe frame in which the deformations are
measured should not change the physics predictions, but themachine learning models do not
preserve this. For example, the GP formulation in Section 2 does not ensure that rotating the basis
for B (while keeping the components fixed) would give the corresponding fixed components for
the stress predictions in the rotated basis. The advantage of this reduced expansion is that it
embeds rotational objectivity in its structure. To see this, letR be an orthogonal/rotation tensor
with inverse given byR−1 = RT . The rotation ofσ in the original coordinate frame to the
frame defined byR is given by

σ
′ ≡ RσRT = Rf(B)RT . (18)

Invoking the tensor basis expansion gives

σ
′ = c0RIRT + c1RBRT + c2RB2RT

= c0RRT + c1RBRT + c2RBRTRBRT = f(RBRT ) ≡ f(B′),
(19)

which holds since the eigenvalues, and hence invariants andthe coefficient functions, do not
change upon application ofR. In general, an Eulerian tensor function of an Eulerian tensor
argument must be objective in the sense it responds to a rotation of its argument with a corre-
sponding rotation of the function value:

Rf(B)RT = f(RBRT ). (20)

This is precisely what we refer to as rotational invariance.

4.2 Application to Gaussian Process Modeling

The task of regression now falls to learning the coefficientsc0, c1, andc2 as a function of the
invariants. This task is compressed from the original problem of having to learn six stress com-
ponents from six strain components with the added benefit of enforcing the rotational invariance
that provides this reduction. Since GPR guarantees theoretical asymptotic consistency of the pre-
dictions, using GPR to learn the coefficients as a function ofthe invariants indirectly guarantees
asymptotic consistency of the stress tensor predictions since they are just linear combinations of
the three coefficients.

Suppose we are given a dataset of pairs of tensors (B, σ). Under the assumption that the
tensors may be diagonalized, the collinearity of the tensorbasis expansion [Eq. (17)] implies that
they are diagonalized by the same eigenvector matrixQ but with different eigenvalue matrices,
Λσ andΛB, respectively:

σ = QΛσQ
T , (21)

B = QΛBQ
T . (22)

Then for the given input-output pair, the values of the coefficients for the given set of eigenvalues
are given by the solution to a 3× 3 linear system of equations as









λσ1

λσ2

λσ3









=









1 λB1 λ2
B1

1 λB2 λ2
B2

1 λB3 λ2
B3

















c0

c1

c2









. (23)
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This linear system may be inverted easily to yield the coefficients ci(B,σ) for each training
point in the dataset, and the invariantsIi of B may also be computed straightforwardly from
the eigenvalues given in Eq. (16). The three invariantsIi for each observation are accumulated
into a matrix. They take the place of the feature matrixX presented in the previous section,
and a corresponding matrix ofci replacesf. We can thus readily extend the GPR approach to
infer the coefficients as functions of the invariants of the input tensors and thus construct the
representation of the functionσ = c0I+ c1B+ c2B

2 given in Eq. (17).
In cases whereB has repeated eigenvalues, Eq. (23), as it stands, is not invertible. Physically,

this corresponds to the case where equal deformations are applied along different axes. In such a
case, the Cayley-Hamilton theorem and continuity of the deformation to stress mapping require
that the derivative of the stress eigenvalue with respect tothe repeated Finger tensor eigenvalue
must be zero. IfλB1 = λB2 6= λB3,

0 = c1 + 2λB1c2, (24)

should be substituted for one of the redundant equations. IfλB1 = λB2 = λB3, the second
derivative must also be zero, giving the additional equation

c2 = 0, (25)

to replace another of the redundant equations in the system of equations, Eq. (23), in which case
the result is triviallyc0 = λσ1 andc1 = c2 = 0. This can be interpreted physically as a volumetric
deformation leads to a pressure for an isotropic, elastic material, as expected. Combining these
auxiliary conditions with the fact thatB is symmetric positive definite, it is always possible to
map the Finger deformation and Cauchy stress tensors to set of coefficients that satisfy the tensor
basis expansion and forms a well-posed regression.

One issue with this approach is that the inclusion of measurement error of the stress tensor
is not straightforward. Including Gaussian errors in the coefficients will lead to a more complex
noise process in the stress predictions, where the stress tensor components will have unequal
variances and potentially be correlated. While in this workwe are considering noiseless data,
extending GPR to consider noisy data is a problem worth considering in future work.

4.3 Example: Matrix Exponential

To illustrate the impact of embedding rotational invariance in the GP formulation, we consider
the representation of the matrix exponential

S = exp(B) = Q exp(Λ)QT , (26)

from a limited number of training samples. As in Section 4.2,B = QΛQT is a symmetric
diagonalizable matrix with eigenvector matrixQ and diagonal eigenvalue matrixΛ. Clearly the
matrix exponential maintains rotational invariance underapplication of a rotationR, and the
series representation ofexp(B) demonstrates the coaxiality ofexp(B) andB. Given Eq. (23),
the expansion coefficients may be determined from









exp λ1

exp λ2

exp λ3









=









1 λ1 λ2
1

1 λ2 λ2
2

1 λ3 λ2
3

















c0

c1

c2









. (27)
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To create the dataset, we draw random uniformly distributed3× 3 matrices with entries be-
tween[0, 1] and compute their symmetric part. A single GP is formed over the six independent
tensor components (the upper triangular part) ofB to predict the six independent output tensor
components. This formulation is compared against the TBGP formulation, where the three in-
variants are used to predict the three expansion coefficients with a single GP. Thescikit-learn
library (Pedregosa et al., 2011) was used to train the GPs in both cases. The root-mean-square
error is evaluated in each case at 10,000 testing points for validation. The input training points
are then rotated randomly, and the GP prediction is evaluated at the inputs.

Figure 1 shows the results of the testing error as a function of increasing training points
for the GP and TBGP formulations. Since the rotationally invariant formulation does not take
the orientation of the eigenvectors into account, it is expected that the prediction error on the
modified inputs in this case would be small, whereas the prediction error for the normal GP
could be quite large. The TBGP error is indeed 1–2 orders of magnitude lower than the GP
error on the testing sets, and the error on the randomly rotated training set is also over 5 orders
of magnitude lower, demonstrating that the TBGP formulation learns the underlying function
much more quickly than a standard GP. It also appears to take an order of magnitude order
more data before the GP error catches up to the error that the TBGP had on the smallest dataset.
The error on the rotated training set appears to increase, which we attribute to a combination
of increasing condition number of the covariance matrix andaccumulated interpolation error in
the GP through the training points from the use of regularization to maintain invertibility. Even
with these effects, the TBGP has very little error throughout the tests and is uniformly the better
choice.

5. STRAIN ENERGY POTENTIAL GAUSSIAN PROCESS

The tensor basis GP formulation is quite powerful and could be made general to many different
types of processes. For hyperelastic materials, where the stress is the derivative of a potential, it
is possible to take this approach one step further with an alternate formulation. As in Eq. (3), we

FIG. 1: The root-mean-square error (RMSE) in predicting the matrixexponential for the GP and TBGP
formulations as a function of training set size. The resultsalso show the RMSE of the regressors evaluated
at random rotations of the training set pairs.
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define the strain-energy density functionΦ such that the stress tensor may be computed as

σ =
2

I
1/2
3

B
∂Φ

∂B
, (28)

for some appropriateΦ(B). The strain-energy density is an invariant scalar quantityand cannot
depend on the rotation of the frame; thus for an isotropic hyperelastic material it is preferable
to express the strain-energy density as a function of the invariants ofB. Thus the expression for
the stress tensor may be expanded as

σ =
2

I
1/2
3

B

(

∂Φ

∂I1

∂I1

∂B
+

∂Φ

∂I2

∂I2

∂B
+

∂Φ

∂I3

∂I3

∂B

)

, (29)

where we have applied the chain rule for the strain-energy density partial derivatives. The deriva-
tives of the invariants with respect to the original tensor may be computed directly using matrix
calculus identities (Bonet and Wood, 1997). Specifically, we use

∂I1

∂B
= I,

∂I2

∂B
= I1I−B, (30)

∂I3

∂B
= I3B

−1,

and the expression forσ simplifies to

σ =
2

I
1/2
3

[

I3
∂Φ

∂I3
I+

(

∂Φ

∂I1
+ I1

∂Φ

∂I2

)

B− ∂Φ

∂I2
B2

]

. (31)

This expression explicitly takes the form of a tensor-basisexpansion of the type in Eq. (17),
where we have

c0 = 2I1/2
3

∂Φ

∂I3
,

c1 =
2

I
1/2
3

(

∂Φ

∂I1
+ I1

∂Φ

∂I2

)

, (32)

c2 = − 2

I
1/2
3

∂Φ

∂I2
.

For a given set of coefficients and invariants, the corresponding partial derivatives can be
evaluated using the following relations:

∂Φ

∂I1
=

I
1/2
3

2
(c1 + c2I1),

∂Φ

∂I2
= −c2I

1/2
3

2
, (33)

∂Φ

∂I3
=

c0

2I1/2
3

.
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Thus given a set of observed pairs of(σ,B) and Eqs. (23) and (33), we can infer the correspond-
ing values of the gradient of the strain-energy density function. Furthermore, we “ground” the
function (i.e., remove the indeterminacy of calibration ofΦ from derivative data) by choosing a
zero-point energy for a set of invariants where the materialhas not been deformed. Hence, we
augment the gradient information with the datum corresponding toσ(B = I) = 0:

Φ(I1 = 3, I2 = 3, I3 = 1) = 0. (34)

The GP regression technique can be extended to take advantage of derivative information
since the derivative of a GP is also a GP. Specifically, the covariance between the derivatives
of the stress-energy density between two different points in invariant space,I = (I1, I2, I3) and
I
′ = (I ′1, I

′

2, I
′

3), can be evaluated as

Cov

[

∂Φ(I)

∂Ii
,Φ(I′)

]

=
∂K(I, I′)

∂Ii
, (35)

Cov

[

∂Φ(I)

∂Ii
,
∂Φ(I′)

∂I ′j

]

=
∂2K(I, I′)

∂Ii∂I
′

j

. (36)

Using these relations, a GP may be formed simultaneously over Φ at the grounding point and its
derivatives over the dataset by using the block covariance matrix

KΦ(I, I
′) =























∂2K

∂I1∂I
′

1

∂2K

∂I1∂I
′

2

∂2K

∂I1∂I
′

3

∂2K

∂I2∂I
′

1

∂2K

∂I2∂I
′

2

∂2K

∂I2∂I
′

3

∂2K

∂I3∂I
′

1

∂2K

∂I3∂I
′

2

∂2K

∂I3∂I
′

3























, (37)

where each entry is a matrix corresponding to the covariancebetween the individual derivatives
of Φ evaluated between each of the training data points. The grounding pointIg = (3, 3, 1) is
included by augmenting this matrix with an additional row and column:

Kg(I, I
′) =































K(Ig, Ig)
∂K(Ig, I

′)

∂I ′1

∂K(Ig , I
′)

∂I ′2

∂K(Ig, I
′)

∂I ′3

∂K(I, Ig)

∂I1

∂K(I, Ig)

∂I2
KΦ(I, I

′)

∂K(I, Ig)

∂I3































. (38)

In a slight abuse of notation, in the matrixKΦ(I, I
′) in Eq. (37) and the matrixKg(I, I

′) in
Eq. (38), the argumentsI andI′ should be interpreted as matrices of the invariants at the training
points (as opposed to individual points).
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The GP mean of the potential,Φ, and its gradient with respect to the invariants,∇IΦ =
{ ∂Φ
∂I1

, ∂Φ
∂I2

, ∂Φ
∂I3

}, at a new pointI∗ = (I∗1 , I
∗

2 , I
∗

3 ) may then be predicted with

E[(Φ(I∗),∇IΦ(I
∗)] = Kg(I

∗, I)w, (39)

where we have defined the weight vector

w = K−1
g (I, I′)

[

0
∂Φ

∂I1

∂Φ

∂I2

∂Φ

∂I3

]T

, (40)

where the right-hand side partial derivatives are at the observed data points, andKg(I
∗, I) is the

covariance between the test points and the training points augmented with the ground point. This
expression is analogous to Eq. (10), although here we have omitted the noise term. The gradient
of the potentialΦ, and hence the stressσ, may be evaluated using the same weight vector.

Although this formulation sets a coregionalization model for multioutput GPR, the inclusion
of derivative information in the covariance matrix has a tendency to exacerbate ill-conditioning
and round-off errors in the inference process (Wu et al., 2017). Thus it is expected that prediction
accuracy may deteriorate in certain circumstances.

6. RESULTS: MOONEY–RIVLIN MATERIAL

In this section we consider the application of GPR to predicting data drawn from the stress re-
sponse of the deformation of a hyperelastic material. The underlying truth model will be assumed
to be a compressible Mooney–Rivlin material with strain-energy density function

Φ = k1
(

I
−1/2
3 I1 − 3

)

+ k2
(

I
−2/3
3 I2 − 3

)

+ k3
(

I
1/2
3 − 1

)2
, (41)

where we takek1 = 0.162 MPa,k2 = 0.0059 MPa, andk3 = 10 MPa (Marckmann and Verron,
2006) and we makek3 large (k3 ≫ k1, k2) to effect a nearly incompressible material response.

We generate realizations of arbitrary mixed compression/tension/shear states using the fol-
lowing procedure. LetV be a diagonal matrix of randomly sampled positive values between
0 < l ≤ 1 < u, and letR be a random rotation matrix sampled uniformly on SO(3). We then
employ the polar decomposition of the deformation gradienttensor

F = RV, (42)

with corresponding Finger tensor
B = RV2RT , (43)

thus guaranteeing that the determinant ofF is positive and thatB corresponds to a valid di-
agonalizable tensor with some superposition of tension/compression and shear in arbitrary di-
rections. The corresponding eigenvalues ofB are randomly distributed in the interval[l2, u2].

The results shown in Figs. 2, 3, and 4 are for two datasets, onesampling[l2, u2] = [1.0, 1.5]
and another covering[0.9, 2.0]. This first choice includes strain values corresponding only to
mild extension along the principal axes, while the second choice includes a more extreme range
from mild compression to much more extension. The GP, TBGP, and potential-TBGP formula-
tions were trained on 100 different random samples of datasets of varying size, and each trial’s
hyperparameters were selected with multistart L-BFGS optimization (Byrd et al., 1995) of the
marginal likelihood with 20 random initializations.
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FIG. 2: The root-mean-square error of the stress tensor for the GP, TBGP, and potential-TBGP formulations
as a function of training set size for[l2, u2] = [1.0, 1.5] (upper panel) and[0.9, 2.0] (lower panel)

FIG. 3: The component-wise fraction of variance unexplained (1− ρ2) for the stress tensor predictions as
a function of training set size for[l2, u2] = [1.0, 1.5]. Top row are the tension components, and the bottom
are the shear components.

The root-mean-square error is shown in Fig. 2 and fraction ofvariance unexplained 1− ρ2

for correlation coefficientρ for the stress tensor components are shown in Figs. 3 and 4 as a
function of the training set size for both datasets. It is clear that the TBGP has a substantially
lower error than the GP with approximately the same rate of convergence, with 1–2 orders of
magnitude lower error and 5–6 orders of magnitude lower unexplained variance. As in the matrix
exponential example, the TBGP formulation is uniformly thebest choice at all tested numbers
of datapoints. However, the potential-based TBGP has aboutthe same error as the regular GP,
and both show slightly degraded performance on predicting the shear components of the stress
tensor compared to the tension components. In addition, forlarger sets of data the accuracy
of potential-TBGP stops improving and, in the larger deformation case, the error diverges. We
attribute this trend to attempting to learn the full function behavior from gradient information
alone, as well as the much larger and more ill-conditioned covariance matrix formed in the
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FIG. 4: The component-wise fraction of variance unexplained (1− ρ2) for the stress tensor predictions as
a function of training set size for[l2, u2] = [0.9, 2.0]. Top row are the tension components, and the bottom
are the shear components.

inference process. Individual trials of the training process become more likely to yield higher-
error models, increasing the average error. It is likely that using advanced low-rank factorizations
of the covariance matrix or better regularization would reduce the magnitude of this diverging
error.

Although the potential-TBGP performance for predicting the stress components is no better
than the GP, it is capable of predicting the strain-energy density function with fairly high accu-
racy, which is not a task that either of the other two formulations are capable of doing directly.
Figure 5 shows the root-mean-square error and correlation coefficient as a function of training
set size. The prediction accuracy does show substantial improvement with increasing training
data for the lower-stretch case[l2, u2] = [1.0, 1.5], but the ill-conditioning issues prevalent in the
stress predictions for the higher-stretch case[l2, u2] = [0.9, 2.0] pervade the potential prediction
as well. Figure 6 shows that the source of disagreement between the potential-TBGP and the
Mooney–Rivlin potential originates from values at higher energy, where there is less training
data available and a more complex trend to predict. One possible solution to improve the perfor-
mance of the potential-TBGP is to use a greedy point selection approach that would use points
that span a wider range of invariant space and energy densityto train the GP.

7. CONCLUSION

This paper has developed and demonstrated an approach to embedding rotational invariance
in the GPR framework for constitutive modeling of isotropichyperelasticity. Embedding this
physics knowledge led to a dramatic improvement in the accuracy and learning curves for the
TBGP formulation compared to the traditional component-based approach. Also the potential-
TBGP formulation demonstrated recovery of the potential function from stress-strain data with
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FIG. 5: The root-mean-square error (upper) and unexplained variance (lower) of the strain energy density
functionΦ as a function of training set size from the potential-TBGP for [l2, u2] = [1.0, 1.5] (left) and
[l2, u2] = [0.9, 2.0] (right)

FIG. 6: Scatter-plot of the predicted and actual strain energy density values at the highest training set size
for the cases[l2, u2] = [1.0, 1.5] (upper panel) and[0.9, 2.0] (lower panel)

comparable accuracy to the plain GP formulation for stress prediction. While the examples con-
sidered here are relatively simple, the application of the methodology to more complex hypere-
lastic materials and functions of kinematic variables is straightforward.

One important consideration for future work is the representation of anisotropic material
response and functions of multiple tensors. In these cases,the tensor basis and corresponding
invariants are more complex, but the underlying process remains the same. For example, the sec-
ond Piola–Kirchoff tensorS may be expressed as a function of the Cauchy–Green deformation
tensorC = FTF and a structure tensorG that characterizes the anisotropy in the response:
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S = f(C,G), (44)

[see Zheng (1994) for more details]. For the case of transverse isotropy where the material
response along a directiong is different than in the plane perpendicular to the unit vector g,
G = g⊗ g can be employed as the structure tensor. The corresponding expansion forS is

S =
6
∑

i=1

ciAi, (45)

in terms of the tensorsAi ∈ {I,C,C2,G,CG + GC,C2G + GC2} and coefficientsci,
which are functions of the extended invariant set{trC, trC2, trC3, trCG, trC2G} [refer to
Boehler (1987) and useG2 = G]. SinceS is a symmetric tensor and the tensor basis{Ai} is a
linearly independent set, the expansion gives six equations for the six unknownsci, which may
be solved readily. (If representation theory suggests moretensor basis elements than unknowns,
the basis can be reduced to an independent set that spans the output, at which point the suggested
procedure applies.) In this way, the corresponding coefficients as a function of the invariants may
be inferred and a TBGP may be trained to make predictions for an anisotropic material response.

There is also room to improve the predictions of the potential-based TBGP. The squared-
exponential kernel was selected for its simplicity and smoothness, but it is possible that a more
complex or nonstationary kernel would be able to capture thebehavior of the potential func-
tion in invariant-space more accurately and overcome the ill-conditioning issues seen in this
formulation. Other work suggests that approaches involving low-rank or spectral representations
of the covariance matrix with derivative information wouldlikely improve the accuracy of the
inference process as well.
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