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In this work, we develop Gaussian process regression (GPR) models of isotropic hyperelastic material
behavior. First, we consider the direct approach of modeling the components of the Cauchy stress
tensor as a function of the components of the Finger stretch tensor in a Gaussian process. We then
consider an improvement on this approach that embeds rotational invariance of the stress-stretch
constitutive relation in the GPR representation. This approach requires fewer training examples and
achieves higher accuracy while maintaining invariance to rotations exactly. Finally, we consider
an approach that recovers the strain-energy density function and derives the stress tensor from this
potential. Although the error of this model for predicting the stress tensor is higher, the strain-energy
density is recovered with high accuracy from limited training data. The approaches presented here
are examples of physics-informed machine learning. They go beyond purely data-driven approaches
by embedding the physical system constraints directly into the Gaussian process representation of
materials models.

KEY WORDS: Gaussian process regression, hyperelastic materials, physics-informed
machine learning

1. INTRODUCTION

Machine learning models have seen an explosion in developamel application in recent years
due to their flexibility and capacity for capturing the trerid complex systems (Hastie et al.,
2016). Provided with sufficient data, the parameters of theehmay be calibrated in such a
way that the model gives high fidelity representations ofuhderlying data generating pro-
cess (Raissi et al., 2017; Jones et al., 2018; Frankel €2Gl9a,b). Moreover, computational
capabilities have grown such that constructing deep legrmodels over datasets of tens of
thousands to millions of data points is now feasible (Deaad.e012). There remain, however,
many applications in which the amount of data present isffiegent on its own to properly
train the machine learning model. This may be due to a prtwety large model that requires
a correspondingly large amount of data to train and whemeitigadata is expensive to acquire.
Furthermore, even with a wealth of data, it is possible thathachine learning model may yield
behavior that is inconsistent with the expected trend oftleelel when the model is queried in
an extrapolatory regime.

In such cases it is appealing to turn to a framework that allthve incorporation of physi-
cal principles and othea priori information to supplement the limited data and regularmee t
behavior of the model. This information can be as simple ascavk set of constraints that the
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regressor must satisfy, such as positivity or monotonieiti1 respect to a particular variable, or
can be as complex as knowledge of the underlying data-gémegpocess in the form of a par-
tial differential equation. Consequently, the past fewrgdave seen great interest in “physics-
constrained” machine learning algorithms within the stfencomputing community (Brunton
et al., 2016; Jones et al., 2018; Lee and Carlberg, 2020; &iral., 2016; Lusch et al., 2018;
Pan and Duraisamy, 2018; Raissi and Karniadakis, 2018)oVéview paper by Karpatne et al.
(2017) provides a taxonomy for theory-guided data sciewdd,the goal of incorporating sci-
entific consistency in the learning of generalizable maddlsch research in physics-informed
machine learning has focused on incorporating constraimsural networks (Ling et al., 2016;
Jones et al., 2018), often through the use of objectiveflosstions that penalize constraint
violation (Magiera et al., 2020).

In contrast, the focus in this paper is to incorporate rotati symmetries directly and exactly
into Gaussian process (GP) representations of physiqadnes functions. This approach has the
advantages of avoiding the burden of a large training séttitaes with a neural network model,
and the inexact satisfaction of constraints that come wattafization of constraints in the loss
function. There has been significant interest in the incaton of constraints into Gaussian
process regression (GPR) models recently (Bachoc et d9;d0a Veiga and Marrel, 2012;
Jensen et al., 2013; Lépez-Lopera et al., 2018; Raissi,&2@l7; Riihimaki and Vehtari, 2010;
Solak et al., 2003; Yang et al., 2018). Many of these appreatdverage the analytic formula-
tion of the GP to incorporate constraints through the Ihkadid function or i.e. the covariance
function.

In this paper, the task of learning the six components of ansgtric stress tensor from the
six components of a symmetric stretch tensor is formuldienligh a series of transformations
so that it becomes a regression task of learning three ceetficthat are a function of three
invariants of the problem. The main contribution of this geais the extension of GPR to enforce
rotational invariance through a tensor basis expansion.

The paper is organized as follows: Section 2 presents arvieveof constitutive models
for hyperelastic materials. Sections 3 and 4 present GPRhanektension to a tensor basis GP,
respectively. Section 5 presents a further extension ofehsor-basis GP to handle the strain
energy potential. Section 6 provides results for a padiduyperelastic Mooney—Rivlin material,
and Section 7 provides concluding discussion.

2. HYPERELASTIC MATERIALS

A hyperelastic material is a material that remains elastmissipative) in the finite/large strain
regime. In this context the fundamental deformation measithe 3x 3 deformation gradient

tensorF': 5
X
F=_—— 1
g (1)
which is the derivative of the current positianwith respect to positioiX of the same material
point in a chosen reference configuration. In an Euleriamé&n an inertial frame from which

the tensors are measured), the Finger telsor
B = FF7, (2)

is the typical finite stretch measure, which is directly tetbto the Almansi strain, which mea-
sures the total deformation that a material has undergdatd/eeto its initial configuration. Note
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that this tensor is symmetric positive definite, as its eigéres are equal to the relative changes
in length along principal axes, and negative lengths argassible. [The choice of the Finger
tensor is not limiting in terms of the generality of this fartation, given the equivalence of
strain measures provided by the Seth—Hill (Hill, 1968) araylB—Ericksen (Doyle and Erick-
sen, 1956) formulae.] The deformation of a hyperelastienmtrequires an applied stress state,
associated with a certain amount of energy, to arrive atdbfdrmed state. For a hyperelastic
material, the stress is solely a function of the currentdréor strain) of the material. Hence, the
major goal of material modeling of hyperelastic material$oi construct constitutive relations
between the kinematic variabl® and the corresponding dynamic variable, the 3 Cauchy

stress tensor
2 0d

:W B’ 3)

which for a hyperelastic material is given by the derivativth respect to all the tensor compo-
nents of a potential, namely the strain energy denBjtgnd|B| is the determinant of the Finger
tensor. Without additional arguments such as a structumsotethis formulation is appropriate
for isotropic hyperelastic materials. For further detalsase consult Malvern (1969), Ogden
(1997), and Gurtin (1982).

Typical approaches to model these relations seek semigaifiormulations for the strain
energy density with some parameters to be fit, which are théo éixperimental data. An ex-
ample of this type of formulation will be discussed in a lagection. In this work we consider
nonparametric modeling of hyperelastic material respgnse

o=f(B)

3. GAUSSIAN PROCESS REGRESSION

GPR provides a nonparametric model for a response funchi@m gn input set of training data
through a Bayesian update involving an assumed prior ldigtan and a likelihood tying the
posterior distribution to observed data. We denote a GR foia functionf by

f ng(07 K)? (4)

where we assume the GP has a nominal mean of 0, without lossnefality, and is described
by a covariance functioik’. We adopt the commonly employed squared-exponential izonee
function:

K(z,2') = 01exp (792|x — x'|2), (5)

which has a scale parametigrand a (inverse-square) length paraméter

A GP is defined such that any finite collection of realizatitmosn the process are governed
by a multivariate normal distribution. That is, for any sébbserved realizations and predic-
tion pointsX* with corresponding function valug&X) and f(X*), the probability distribution

p(f(X*), F(X)[X*, X) is given by
) : (6)

)+l

fX)

where it is understood that the vectors and matrices predeme given in block form for mul-
tiple instances iX and X*. GPR uses a GP as a prior over the function space for the data-
generating process, and predictions proceed through thefuBayes’ rule. Upon observation

of some initial set of noisy data poings= y(X) ~ N(f(X), e?), wheree? is the variance of

K(X,X)  K(X,X*)
K(X*,X)  K(X*,X*)
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Gaussian noise in the function values, the probabilityrithstion of the values of the GP 3t
may be determined by forming the (posterior) conditionatribution ofp(f|y, X):

pM%X):pW“WGM) p(y|f)p(f|X)

= 7
o) TpFpEX)ar "
wheref = f(X) and the Gaussian likelihood is given by
Sl (yi — fi)?

The push-forward posterior distribution for predictionsaew set of pointX* has the follow-
ing analytical solution:

£ = F(X)X,y, X" ~ N [K*(K+ e2) " ty, K™ — K*(K+ &?) T TKT ], 9)

wherel denotes the identity matri = K (X, X), K* = K(X* X), andK** = K(X* X*).
Then the predictive mean of the distribution at any new oftitis given by

Ely*[X,y, X*] = K*(K + €)1y, (10)
and the predictive variance, assuming the same noise Is\ggien by
VIy*[X, y, X = K** — K*(K + e2) KT + €2, (11)

wherey* = y(X*). This result shows the combination of uncertainty in thedjmtion due to
epistemic uncertainty in the mean process (the first twogennthe right side) plus the aleatoric
uncertainty of inherent variability in the measuremerite (st term on the right side). In this
work, although we will work with noiseless data, we assumalaezofe? = 10~ in order to
regularize the inversion of the covariance matrix.

The task that dominates the computational expense in emtisty this model is the inver-
sion of (K + €2I), or, equivalently, the solution of the linear system based + ¢21) for
either the mean or variance evaluations. Sikcis dense, the scaling is typical@(N?) for
N training points. This limitation constrains GPR to at m&st= 10,000 since memory and
computation time become prohibitive, although for this kvaue found thatv = O(100) was
sufficient to reach reasonable accuracy, as will be showen ldbminally the matrix is symmet-
ric positive semidefinite, which enables efficient solutigriCholesky decompositions, although
ill-conditioning is frequently an issue, especially forda dataset sizes. lll-conditioning requires
adding a nugget or large noise $ 1) term to the covariance matrix to regularize the solution,
using pseudoinverses via the singular value decomposificthe covariance matrix, or other
greedy subset selection to reduce the matrix size.

It appears at first glance that the variance in Eq. (11) is nallyiindependent of the actual
point valuesy, and only depends on the locations of the selected datasptiftis is true for a
fixed covariance function; however, we are typically ingtee in changing the GP hyperparame-
ters to maximize the accuracy of the GP while balancing théehcomplexity. Traditionally, this
is managed by tuning the hyperparameters to optim{gex), which is the marginal-likelihood
of the GP, and is frequently called the “model evidence.” izgjently, we may optimize the
logarithm of the model evidende = log p(y|X) for numerical stability reasons:

1 41 N
L=-5y" (K+ &) ly—élog|K+£zl|—Elog2ﬂ'. (12)
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That is, we choose to tune the covariance hyperparangtensdo, in Eq. (5) in order to max-
imize L. It is worth noting that solving this optimization problemquires multiple inversions
of a dense covariance matrix, further increasing the cogediorming the inference. Further
discussion of this approach can be found in Rasmussen atidil(2006).

4. TENSOR BASIS GAUSSIAN PROCESS

In this section we show how the standard GPR described inrthéqus section may be adapted
to enforce rotational invariance through a tensor basismesipn. We call this formulation a
tensor basis Gaussian process (TBGP).

4.1 Tensor Basis Expansion

We consider the generic hyperelastic constitutive mod#éi@form
o =f(B), (13)

which, for any given analytic tensor valued functifyrmay be expanded in an infinite series in
terms ofB with fixed coefficients:,,:

o= i é,B". (14)
n=0

Note thatB is symmetric, positive definite, and hence has a completnbumgsis. Furthermore,
it is clear thato andB are coaxial, (i.e., have the same eigenbasis), due to théhktowe are
considering an isotropic material. Since the tensors efr@st are symmetric and of sizex33,
the Cayley-Hamilton theorem states that the te3aatisfies its corresponding characteristic
polynomial

B® - I,B?>+ I,B — I3I = 0, (15)

where we have defined the tensor invariants

I]_ = tr(B) = }\Bl + }\Bg + )\331

1
I = E [tr(B)z - tr(Bz)] = }\Bl}\BZ + )\Bz}\B3 + }\33)\31’ (16)
13 = det(B) = )\Bl}\BzABy

so-called because they are invariant under similaritysfieimations (i.e., rotations) @. Here,
A, Ap,, andAp, are the eigenvalues @, which are also a complete set of invariants. The
theorem can be used as a recursion relation to write all ofdB higher than 2 in terms of
I, B, andB? with coefficients that depend on the invariants and the uwkng. Rather than
seeking to identify the infinite number of fixed coefficieaidor a given constitutive relation,
our task reduces to finding the three coefficients in the sespansion

o = co(In, I, )L + c1(I1, Ip, I3)B + ca(11, I, I3) B, (17)

wherec; is a function of the invariants; this notation will be supgsed for the remainder of this
work for clarity.
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One issue in many machine learning models of constitutileions is that they do not
always preserve rotational objectivity; that is, rotatthg frame in which the deformations are
measured should not change the physics predictions, buh#whine learning models do not
preserve this. For example, the GP formulation in Sectionesahot ensure that rotating the basis
for B (while keeping the components fixed) would give the corresjrtg fixed components for
the stress predictions in the rotated basis. The advantatiesoreduced expansion is that it
embeds rotational objectivity in its structure. To see,tl@sR. be an orthogonal/rotation tensor
with inverse given byR~! = R7. The rotation ofc in the original coordinate frame to the
frame defined by is given by

¢’ = RoR” = Rf(B)R”. (18)
Invoking the tensor basis expansion gives

o’ = oRIRT + ¢;RBRT + ;RB?R”
(19)
= coRRT + ¢;RBR” + c;RBRT’RBR” = f(RBR”) = f(B'),

which holds since the eigenvalues, and hence invariantdhendoefficient functions, do not
change upon application @. In general, an Eulerian tensor function of an Eulerian dens
argument must be objective in the sense it responds to aomftaftits argument with a corre-
sponding rotation of the function value:

Rf(B)R” = f(RBRT). (20)

This is precisely what we refer to as rotational invariance.

4.2 Application to Gaussian Process Modeling

The task of regression now falls to learning the coefficiepis;, andc, as a function of the
invariants. This task is compressed from the original pobbf having to learn six stress com-
ponents from six strain components with the added benefitfofeing the rotational invariance
that provides this reduction. Since GPR guarantees thiearasymptotic consistency of the pre-
dictions, using GPR to learn the coefficients as a functiahefinvariants indirectly guarantees
asymptotic consistency of the stress tensor predictiont®ghey are just linear combinations of
the three coefficients.

Suppose we are given a dataset of pairs of tend®r1{. Under the assumption that the
tensors may be diagonalized, the collinearity of the tehasis expansion [Eq. (17)] implies that
they are diagonalized by the same eigenvector m&rbut with different eigenvalue matrices,
A, andAg, respectively:

o=QA,Q", (21)
B = QAsQ’. (22)

Then for the given input-output pair, the values of the cofits for the given set of eigenvalues
are given by the solution to a:3 3 linear system of equations as

)\01 1 }\B1 )\%1 Co
Aoo| = |1 Ap, AL |- (23)
)\63 1 }\33 )\%3 C2
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This linear system may be inverted easily to yield the caefiits ¢;(B, o) for each training
point in the dataset, and the invariaritsof B may also be computed straightforwardly from
the eigenvalues given in Eq. (16). The three invaridnter each observation are accumulated
into a matrix. They take the place of the feature ma¥Xipresented in the previous section,
and a corresponding matrix of replaces. We can thus readily extend the GPR approach to
infer the coefficients as functions of the invariants of thput tensors and thus construct the
representation of the functian = coI + ¢;B + ¢, B? given in Eq. (17).

In cases wherB has repeated eigenvalues, Eq. (23), as it stands, is notibleePhysically,
this corresponds to the case where equal deformations plie@plong different axes. In such a
case, the Cayley-Hamilton theorem and continuity of the@deétion to stress mapping require
that the derivative of the stress eigenvalue with respetttéaepeated Finger tensor eigenvalue
must be zero. lAg, = Ap, # Ag,,

O=c + 27\3102, (24)

should be substituted for one of the redundant equationsg,|lf= Ag, = Ap,, the second
derivative must also be zero, giving the additional equmatio

Coy = 07 (25)

to replace another of the redundant equations in the systenuations, Eq. (23), in which case
the resultis triviallyco = Ay, ande; = ¢, = 0. This can be interpreted physically as a volumetric
deformation leads to a pressure for an isotropic, elastienad, as expected. Combining these
auxiliary conditions with the fact thd is symmetric positive definite, it is always possible to
map the Finger deformation and Cauchy stress tensors tosmtfficients that satisfy the tensor
basis expansion and forms a well-posed regression.

One issue with this approach is that the inclusion of measent error of the stress tensor
is not straightforward. Including Gaussian errors in thefficients will lead to a more complex
noise process in the stress predictions, where the stnessrteomponents will have unequal
variances and potentially be correlated. While in this wakare considering noiseless data,
extending GPR to consider noisy data is a problem worth denisig in future work.

4.3 Example: Matrix Exponential

To illustrate the impact of embedding rotational invariairc the GP formulation, we consider
the representation of the matrix exponential

S = exp(B) = Qexp(A)Q7, (26)

from a limited number of training samples. As in Section 42= QAQ” is a symmetric
diagonalizable matrix with eigenvector matfixand diagonal eigenvalue mati Clearly the
matrix exponential maintains rotational invariance unagplication of a rotatiorR, and the
series representation etp(B) demonstrates the coaxiality ekp(B) andB. Given Eq. (23),
the expansion coefficients may be determined from

exp Aq 1 A A2 e
expAa| = |1 Ay A3| |ea- (27)
exp7\3 1 )\3 }\% C2
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To create the dataset, we draw random uniformly distrib@ted3 matrices with entries be-
tween|0, 1] and compute their symmetric part. A single GP is formed olersix independent
tensor components (the upper triangular pariBab predict the six independent output tensor
components. This formulation is compared against the TB@®dlation, where the three in-
variants are used to predict the three expansion coefficigith a single GP. Thscikit-learn
library (Pedregosa et al., 2011) was used to train the GPstimd¢ases. The root-mean-square
error is evaluated in each case at 10,000 testing pointsal@tation. The input training points
are then rotated randomly, and the GP prediction is evaluattéhe inputs.

Figure 1 shows the results of the testing error as a functfadnaveasing training points
for the GP and TBGP formulations. Since the rotationallyaiant formulation does not take
the orientation of the eigenvectors into account, it is exge that the prediction error on the
modified inputs in this case would be small, whereas the ptiedi error for the normal GP
could be quite large. The TBGP error is indeed 1-2 orders afnitiade lower than the GP
error on the testing sets, and the error on the randomlyegtaaining set is also over 5 orders
of magnitude lower, demonstrating that the TBGP formutatearns the underlying function
much more quickly than a standard GP. It also appears to tal@der of magnitude order
more data before the GP error catches up to the error thaBdThad on the smallest dataset.
The error on the rotated training set appears to increasehwe attribute to a combination
of increasing condition number of the covariance matrix aoclimulated interpolation error in
the GP through the training points from the use of reguléionao maintain invertibility. Even
with these effects, the TBGP has very little error throughbe tests and is uniformly the better
choice.

5. STRAIN ENERGY POTENTIAL GAUSSIAN PROCESS

The tensor basis GP formulation is quite powerful and coeldiade general to many different
types of processes. For hyperelastic materials, wherdrigsss the derivative of a potential, it
is possible to take this approach one step further with @nradte formulation. As in Eq. (3), we

10°

107t

1072

w
Q10
o
1073
e
1076 _.- -
P
‘/.
10-7 /‘/ —— GP test
P —-~ rotated GP train
T —— TBGP test
1078 — 7 —-- rotated TBGP train

10! 10?
N

FIG. 1: The root-mean-square error (RMSE) in predicting the maxigonential for the GP and TBGP
formulations as a function of training set size. The resalks show the RMSE of the regressors evaluated
at random rotations of the training set pairs.
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define the strain-energy density functiérsuch that the stress tensor may be computed as

2 09

72 B (28)

for some appropriat®(B). The strain-energy density is an invariant scalar quaatfity cannot
depend on the rotation of the frame; thus for an isotropicehglastic material it is preferable
to express the strain-energy density as a function of trerriawts ofB. Thus the expression for
the stress tensor may be expanded as

_ 2 (920h 020D 0% 0l 29)
N M2 \0IL 0B = 0I;0B  0I30B

where we have applied the chain rule for the strain-energgitiepartial derivatives. The deriva-
tives of the invariants with respect to the original tensayyrbe computed directly using matrix
calculus identities (Bonet and Wood, 1997). Specifically,use

I
% = NLI-B, (30)
% =B,
and the expression far simplifies to
UZ%[I g;DI—F(gi—FIlgi)B—g—zB} (31)

This expression explicitly takes the form of a tensor-basisansion of the type in Eq. (17),
where we have

o
_211/2
o3’
2 (0® 0
Lo— 32
“a= 7 (511+ 18]2)’ (32)
2 00

C=——F7"
2 I;_/Z(‘)"]’z

For a given set of coefficients and invariants, the corredpanpartial derivatives can be
evaluated using the following relations:

00 I,/°
oL, = 7 (@t e
1/2
or_ ok (33)
ol 2
0P . Co
oL~ 2%
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Thus given a set of observed pairg of B) and Egs. (23) and (33), we can infer the correspond-
ing values of the gradient of the strain-energy density fienc Furthermore, we “ground” the
function (i.e., remove the indeterminacy of calibrationfofrom derivative data) by choosing a
zero-point energy for a set of invariants where the matéaal not been deformed. Hence, we
augment the gradient information with the datum correspantb o(B = I) = 0:
®(I,=31,=313=1)=0. (34)
The GP regression technique can be extended to take adeaoftagrivative information
since the derivative of a GP is also a GP. Specifically, theadaxice between the derivatives
of the stress-energy density between two different pomtisvariant spacd] = (I3, I», I3) and

I' = (I, I}, I}), can be evaluated as

oe(I) 1 OK(LY)

cov[ 51 )] =5 (35)
oe(1) 92(1)|  PK(LY)

Covl o1, ' oI |~ aLor (38)

Using these relations, a GP may be formed simultaneouslydwt the grounding point and its
derivatives over the dataset by using the block covariaratgixn

PK  PK  PK
oLOI, 9LOI, LI}
Ko (LT — PK  PK  PK a7
@(LT) = LI, 0LOI, 0LOI,|’ (37)
PK  9PK K
001, 01301, 0I301}

where each entry is a matrix corresponding to the covaribatgeen the individual derivatives
of ® evaluated between each of the training data points. Thending pointl, = (3,3,1) is
included by augmenting this matrix with an additional rovd @elumn;

0K (L,,T')

0K (L,,T)

0K (L,,T')

K(Iy,Ly)

0K (I1,1,)
011
0K (1,1,)

oI,
OK(I,1,)
ol

Ky(LT')

oI;

o1}

Ko(I,T)

o1}

(38)

In a slight abuse of notation, in the matri; (I,I') in Eq. (37) and the matrix,(I,I') in
Eq. (38), the argumenisandl’ should be interpreted as matrices of the invariants at éieiig

points (as opposed to individual points).
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The GP mean of the potentiab, and its gradient with respect to the invariaig® =

{5%, 52, 52}, atanew poini* = (I3, I, I3) may then be predicted with

E[(@(I"), Vie(I")] = Ky (I, T w, (39)
where we have defined the weight vector

o0 9o 091"

=K Y(Lrylo —— — —
w=K,S L0 5T 3L an)|

(40)
where the right-hand side partial derivatives are at themes! data points, ard, (I*,I) is the
covariance between the test points and the training poirgsanted with the ground point. This
expression is analogous to Eq. (10), although here we haiteedrthe noise term. The gradient
of the potentialP, and hence the stress may be evaluated using the same weight vector.

Although this formulation sets a coregionalization moaelrhultioutput GPR, the inclusion
of derivative information in the covariance matrix has admcy to exacerbate ill-conditioning
and round-off errors in the inference process (Wu et al.720lhus it is expected that prediction
accuracy may deteriorate in certain circumstances.

6. RESULTS: MOONEY-RIVLIN MATERIAL

In this section we consider the application of GPR to préuictiata drawn from the stress re-
sponse of the deformation of a hyperelastic material. Thiketying truth model will be assumed
to be a compressible Mooney—Rivlin material with strairmy density function

O = ko (I3 /21— 3) + ko (I57/°1, — 3) + ks (13/% — 1), (41)

where we také; = 0.162 MPak, = 0.0059 MPa, and; = 10 MPa (Marckmann and Verron,

2006) and we makeg;s large (3 > k1, k») to effect a nearly incompressible material response.
We generate realizations of arbitrary mixed compressosion/shear states using the fol-

lowing procedure. LeV be a diagonal matrix of randomly sampled positive valuesvéeh

0 <! <1< u,andletR be a random rotation matrix sampled uniformly on SO(3). th

employ the polar decomposition of the deformation gradiensor

F =RV, (42)

with corresponding Finger tensor
B = RV?RT, (43)

thus guaranteeing that the determinantofs positive and thaB corresponds to a valid di-
agonalizable tensor with some superposition of tensionfression and shear in arbitrary di-
rections. The corresponding eigenvalue®Boére randomly distributed in the intervif, u2].

The results shown in Figs. 2, 3, and 4 are for two datasetssameling[/?, u?] = [1.0, 1.5]
and another coverinfp.9, 2.0]. This first choice includes strain values corresponding ¢l
mild extension along the principal axes, while the secoraiaghincludes a more extreme range
from mild compression to much more extension. The GP, TBG& pmtential-TBGP formula-
tions were trained on 100 different random samples of detasevarying size, and each trial's
hyperparameters were selected with multistart L-BFGSnuiptition (Byrd et al., 1995) of the
marginal likelihood with 20 random initializations.

Volume 1, Issue 1, 2020



12

Frankel, Jones, & Swiler

— GP — GP
TBGP 100 TBGP
—— potential-TBGP —— potential-TBGP
o ¥
W W
g %10
< 102 <
10-3 102
10 20 30 40 10 20 30 40
Nirain Nirain

FIG. 2: The root-mean-square error of the stress tensor for the BBPTand potential-TBGP formulations
as a function of training set size ffif, u?] = [1.0, 1.5] (upper panel) an{D.9, 2.0] (lower panel)
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FIG. 3: The component-wise fraction of variance unexplainee- (@) for the stress tensor predictions as
a function of training set size fdi?, %] = [1.0, 1.5]. Top row are the tension components, and the bottom
are the shear components.

The root-mean-square error is shown in Fig. 2 and fractiovacfince unexplained 4 p?

for correlation coefficienp for the stress tensor components are shown in Figs. 3 and 4 as a
function of the training set size for both datasets. It iacliat the TBGP has a substantially
lower error than the GP with approximately the same rate affemence, with 1-2 orders of
magnitude lower error and 5-6 orders of magnitude lower plagxed variance. As in the matrix
exponential example, the TBGP formulation is uniformly best choice at all tested numbers
of datapoints. However, the potential-based TBGP has aheutame error as the regular GP,
and both show slightly degraded performance on predictiegshear components of the stress
tensor compared to the tension components. In additionlafger sets of data the accuracy
of potential-TBGP stops improving and, in the larger defation case, the error diverges. We
attribute this trend to attempting to learn the full funatioehavior from gradient information
alone, as well as the much larger and more ill-conditionecadance matrix formed in the
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FIG. 4: The component-wise fraction of variance unexplaineé (32) for the stress tensor predictions as
a function of training set size fdt?, u?] = [0.9, 2.0]. Top row are the tension components, and the bottom
are the shear components.

inference process. Individual trials of the training prseéecome more likely to yield higher-
error models, increasing the average error. It is likely tising advanced low-rank factorizations
of the covariance matrix or better regularization wouldueithe magnitude of this diverging
error.

Although the potential-TBGP performance for predicting fitress components is no better
than the GP, it is capable of predicting the strain-energysitie function with fairly high accu-
racy, which is not a task that either of the other two formiolzd are capable of doing directly.
Figure 5 shows the root-mean-square error and correlatiefficient as a function of training
set size. The prediction accuracy does show substantiabirament with increasing training
data for the lower-stretch ca§ié, u?] = [1.0, 1.5], but the ill-conditioning issues prevalent in the
stress predictions for the higher-stretch c$e:?] = [0.9, 2.0] pervade the potential prediction
as well. Figure 6 shows that the source of disagreement eatthe potential-TBGP and the
Mooney-Rivlin potential originates from values at higheergy, where there is less training
data available and a more complex trend to predict. One lgessblution to improve the perfor-
mance of the potential-TBGP is to use a greedy point seleetpproach that would use points
that span a wider range of invariant space and energy ddoditgin the GP.

7. CONCLUSION

This paper has developed and demonstrated an approach txldimdp rotational invariance
in the GPR framework for constitutive modeling of isotropigperelasticity. Embedding this
physics knowledge led to a dramatic improvement in the aguand learning curves for the
TBGP formulation compared to the traditional componergdobapproach. Also the potential-
TBGP formulation demonstrated recovery of the potentiatfion from stress-strain data with
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FIG. 6: Scatter-plot of the predicted and actual strain energyitievalues at the highest training set size
for the cased/?, u?] = [1.0, 1.5 (upper panel) an{D.9, 2.0] (lower panel)

comparable accuracy to the plain GP formulation for stresdiption. While the examples con-
sidered here are relatively simple, the application of tie¢hmdology to more complex hypere-
lastic materials and functions of kinematic variables fiaightforward.

One important consideration for future work is the représton of anisotropic material
response and functions of multiple tensors. In these céisedensor basis and corresponding
invariants are more complex, but the underlying processaimsithe same. For example, the sec-
ond Piola—Kirchoff tenso8 may be expressed as a function of the Cauchy—Green deformati
tensorC = FTF and a structure tens@ that characterizes the anisotropy in the response:
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S =f(C,G), (44)

[see Zheng (1994) for more details]. For the case of trassvesotropy where the material
response along a directignis different than in the plane perpendicular to the unit eeg,
G = g ® g can be employed as the structure tensor. The correspondiagsion forS is

in terms of the tensord; € {I,C,C? G,CG + GC,C?G + GC?} and coefficients:;,
which are functions of the extended invariant §etC, tr C2, tr C3, tr CG, tr C°G} [refer to
Boehler (1987) and usé? = GJ]. SinceS is a symmetric tensor and the tensor bgsis } is a
linearly independent set, the expansion gives six equafanthe six unknowns;, which may
be solved readily. (If representation theory suggests emsor basis elements than unknowns,
the basis can be reduced to an independent set that spangphg at which point the suggested
procedure applies.) In this way, the corresponding coefitsias a function of the invariants may
be inferred and a TBGP may be trained to make predictiongfangotropic material response.

There is also room to improve the predictions of the potébsed TBGP. The squared-
exponential kernel was selected for its simplicity and sthoess, but it is possible that a more
complex or nonstationary kernel would be able to capturebtifeavior of the potential func-
tion in invariant-space more accurately and overcome theoiiditioning issues seen in this
formulation. Other work suggests that approaches invgllow-rank or spectral representations
of the covariance matrix with derivative information wolikely improve the accuracy of the
inference process as well.
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