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A drill string is a slender structure with nonlinear dynamics; it is an equipment used in the oil industry to drill rock
in the search of oil and gas. The aim of this paper is to model the uncertainties related to the speed imposed at the top
and uncertainties related to the bit-rock parameters, and to investigate how these uncertainties propagate throughout
the system. The continuum system is linearized about the prestressed configuration, the finite-element model is applied
to discretize the system, and then a reduced-order model is constructed using normal modes of the linearized system;
only torsional and axial vibrations are considered in the analysis. A constant rotational speed is imposed at the top and
a nonlinear bit-rock interaction acts at the bottom. A probabilistic approach is used to model the uncertainties and the
Monte Carlo method is used to approximate the stochastic differential equations.

KEY WORDS: drill-string dynamics, stochastic dynamics, uncertainty quantification, bit-rock interac-
tion

1. INTRODUCTION

The oil and gas industry has an expressive weight in the world economy. One important step involved in the exploita-
tion of oil is the drilling process. In this sense, one should control the drill-string dynamics to avoid accidents and
waste of resources. A general vibration perspective overview of the process of oil well rotary drilling can be found in
the works of Spanos and co-workers [1, 2].

The drill-string dynamics is complex and has many sources of uncertainties. There are uncertainties related to the
model as well as to the parameters of the model; here, model refers to the structure model, fluid-structure interaction
model, bit-rock interaction model, and so on. Computational models must take into account these uncertainties to
improve their predictions.

There are few articles concerned with uncertainty quantification and stochastic analysis of the drill-string dynam-
ics; in particular, we may cite [3–8]. Spanos et al. [3] analyzed stochastic lateral forces at the bit. Kotsonis and Spanos
[4] analyze a random weight-on-bit using a simple two degrees of freedom drill-string model. Ritto and co-workers
proposed a probabilistic model for the bit-rock interaction model [5] using the nonparametric probabilistic approach
[9, 10]. Then, they proposed a stochastic identification procedure to compute the dispersion parameter of the prob-
abilistic model [6]. Later, they proposed a robust optimization problem to maximize the rate of penetration of the
system without damaging it [7]. Finally, they analyzed a random weight-on-hook [8].

Some computational models have been developed to analyze the coupling between two or three vibration direc-
tions (see, for instance, the works of Yigit and Christoforou [11–13], or Khulief et al. [14], and also Sampaio and
co-workers [15, 16]). A more complete model with coupled axial, torsional, and lateral vibrations has been devel-
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oped by Tucker and Wang [17], where the Cosserat theory is applied, and by Ritto et al. [5], where the nonlinear
Timoshenko beam theory is applied.

The aim of this paper is to analyze the stochastic drill-string dynamics with uncertainty on the top speed and on the
bit-rock parameters, and to investigate how these uncertainties propagate throughout the nonlinear dynamical model.
In this paper, coupled axial and torsional displacements are considered in the analysis, and the bit-rock interaction
model used is based on [18], as done in [13, 14, 16], for instance.

The paper is organized as follows. In Section 2 the deterministic model is depicted in detail. In Section 3 the
probabilistic model is constructed for the uncertain parameters, using the maximum entropy principle. Finally, in
Section 4 the numerical results are analyzed and in Section 5 concluding remarks are made.

2. DETERMINISTIC SYSTEM

In the present model only the axial and the torsional vibrations of the column are considered. In order to focus attention
on the uncertainty analysis (which is the goal of this paper), the lateral vibrations are assumed to be sufficiently small.
The equation of motion for the axial vibration is given by

ρA
∂2u(x, t)

∂t2
− EA

∂2u(x, t)
∂x2

= f(x, t) + fNL[u(x, t),θx(x, t)], (1)

whereu is the axial displacement,ρ is the density of the column,A is the cross-sectional area,E is the elasticity
modulus,f is the force per unit length, andfNL is related to nonlinear and coupling terms. The equation of motion
for the torsional vibration is given by

ρIp
∂2θx(x, t)

∂t2
−GIp

∂2θx(x, t)
∂x2

= tor(x, t) + torNL[u(x, t),θx(x, t)], (2)

whereθx is the angular rotation about thex-axis, Ip is the cross sectional polar moment of inertia,G is the shear
modulus, tor is the torque per unit length, and torNL is related to nonlinear and coupling terms.

In our modeling we assume finite strains, which consequently makes the equations of motion coupled and non-
linear. Therefore, it is easier to derive the nonlinear terms of the equations of motion applying the extended Hamilton
principle. Defining the functionalΠ by

Π =
∫ t2

t1

(U − T −W )dt , (3)

whereU is the potential strain energy,T is the kinetic energy, andW is the work done by the nonconservative forces
and any force not accounted for in the potential energy. The first variation ofΠ must vanish:

δΠ =
∫ t2

t1

(δU − δT − δW )dt = 0 . (4)

2.1 Some Definitions

Some definitions are necessary for the subsequent sections. LetX be a position in the initial configuration andx a posi-
tion in the deformed configuration. The displacement fieldd = (ux, uy, uz) written on the nondeformed configuration
is given by(x− X):

d = (x + u, y cosθx − z sin θx, y sin θx + z cosθx)− (x, y, z)
= (u, y cos θx − z sin θx − y, y sin θx + z cos θx − z) .

(5)

The velocity fieldv is the material time derivative of the displacement field and is written as

v = (u̇,−y sin θxθ̇x − z cos θxθ̇x, y cosθxθ̇x − z sin θxθ̇x) , (6)
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where the material time derivative (d/dt) is denoted by a superposed dot. The stress-strain relationship (written in
Voigt notation) is given byS = [D]ε, whereS is the second Piola–Kirchhoff stress tensorS = (σx, τxy, τxz), ε is the
Green-Lagrange strain tensorε = (εx, 2εxy, 2εxz), and

[D] =




E 0 0
0 G 0
0 0 G


 . (7)

If finite strains are considered:

εx =
∂ux

∂x
+

1
2

(
∂ux

∂x

∂ux

∂x
+

∂uy

∂x

∂uy

∂x
+

∂uz

∂x

∂uz

∂x

)
,

εxy =
1
2

(
∂uy

∂x
+

∂ux

∂y
+

∂ux

∂x

∂ux

∂y
+

∂uy

∂x

∂uy

∂y
+

∂uz

∂x

∂uz

∂y

)
,

εxz =
1
2

(
∂uz

∂x
+

∂ux

∂z
+

∂ux

∂x

∂ux

∂z
+

∂uy

∂x

∂uy

∂z
+

∂uz

∂x

∂uz

∂z

)
.

(8)

Note that the strain tensor[E] might be derived using[E] = 1/2([F ]T [F ]− [I]), where[F ] = dx/dX is the deforma-
tion gradient tensor and[I] is the identity operator, or using[E] = 1/2[dd/dX + (dd/dX)T + (dd/dX)T dd/dX].

2.2 Finite-Element Discretization

The finite-element model is constructed using two-node elements with two degrees of freedom per node (axial dis-
placementu and angular rotationθx). The finite-element approximation of the displacement fields are then written
asu(ξ, t) = Nu(ξ)ue(t) andθx(ξ, t) = Nθx(ξ)ue(t), whereξ = x/le is the element coordinate,N are linear shape
functions, and element displacement is

ue = [u1 θx1 u2 θx2]
T , (9)

where exponentT means transposition.

2.3 Kinetic Energy

The kinetic energy is written as

T =
1
2

∫

V

(
ρvT v

)
dV =

1
2

∫ L

0

(
ρAu̇2 + ρIpθ̇

2
x

)
dx , (10)

whereV is the region of integration andL is the length of the column. The polar moment of inertia is written as
Ip =

∫
A
(y2 + z2)dA, and the above expression was simplified by the approximationcos θx ≈ 1 andsin θx ≈ 0. The

first variation of the kinetic energy, after integrating by parts in time, may be written as

δT = −
∫ L

0

(
ρAüδu + ρIpθ̈xδθx

)
dx , (11)

which yields the constant mass matrix[M ]. The element mass matrix is written as:

[M ](e) =
∫ 1

0

[ρA(NT
u Nu + ρIp(NT

θx
Nθx)] ledξ . (12)
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2.4 Strain Energy

The strain energy is given by

U =
1
2

∫

V

εT SdV . (13)

Substituting the constitutive equationS = [D]ε and computing the first variation of the strain energy yield

δU =
∫

V

δεT




E 0 0
0 G 0
0 0 G


 ε dV . (14)

Following the analysis done in [7], the element stiffness matrix is written as

[K](e) =
∫ 1

0

[
EA

le

(
N′Tu N′u

)
+

GIp

le

(
N′Tθx

N′θx

)]
dξ , (15)

where the space derivative (d/dξ) is denoted by (′). The element geometric stiffness matrix is written as

[Kg](e) =
∫ 1

0

[(
N′Tu N′u

) (
3EAu′ + 1.5EAu′2 + 0.5EIpθ

′2
x

)
+

(
N′Tu N′θx

)
(EIpθ

′
x + EIpθ

′
xu′)

+
(
N′Tθx

N′u
)
(EIpθ

′
x + EIpθ

′
xu′) +

(
N′Tθx

N′θx

) (
EIpu

′ + 0.5EIpu
′2 + 1.5EIp4θ

′2
x + 3EI22θ

′2
x

)] 1
le

dξ ,
(16)

whereu′ = N′uue/le, θ′x = N′θx
ue/le, I22 =

∫
A
(y2z2)dA andIp4 =

∫
A
(y4 + z4)dA.

2.5 Gravity

The work done by gravity is written as

W =
∫ L

0

ρgAudx , (17)

whereg is the gravity acceleration. The variation of Eq. (17) gives

δW =
∫ L

0

ρgA δu dx , (18)

and the discretization by means of the finite-element method yields the force element vector

f(e)g =
∫ 1

0

NT
u ρgA ledξ . (19)

2.6 Bit-Rock Interaction

The bit-rock interaction couples the axial and torsional vibrations [13, 14, 16]; the bit-rock forces are semi-empirical
expressions that are added a posteriori to the model. The torque applied at the bit is given by:

torbit[ωbit(t)] = µbitfbit(t)
[
tanh[ωbit(t)] +

α1ωbit(t)
1 + α2ω

2
bit(t)

]
, (20)

whereωbit is the rotational speed of the bit,µbit is a factor that depends on the bit cutting characteristics,α1 andα2

are constants that depend on the rock properties, andfbit(t) = fc +fa(t) is the weight-on-bit. The weight-on-bit is the
sum of the initial (constant) reaction force at the bitfc and a variable force that is time-dependentfa(t). This variable
force is modeled by harmonic force [19],fa(t) = f0 sin(ω0t)+0.01f0, where the constant term on the right is added
to avoid the possibility of bit bounce (not considered in the model). Note that this axial force does not depend on the
response of the system, which makes the axial vibration much simpler than the torsional one.
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2.7 Initial Prestressed Configuration

Before starting the rotation about thex axis, the column is put down through the channel until it reaches the soil. At
this point, the forces acting on the structure are: the initial reaction force at the bit, the weight of the column, and the
supporting force at the top. In this equilibrium configuration, the column is prestressed. Above the neutral point the
structure is tensioned and below is compressed. If the reaction force increases, the neutral point moves up, increasing
the length of the compressed part. To calculate the initial prestressed state, the column is clamped at the top and,
consequently,

uS = [K]−1(fg + fc) . (21)

wherefg is the force induced by the gravity andfc is the vector related to the initial reaction force at the bitfc. (Note
thatfc = [0 0 . . . fc 0]T .)

2.8 Final Computational Dynamical Model

After computing the prestressed configuration (Section 2.7), the resulting displacement is used to obtain[Kg(uS)]
(constant matrix). Finally, we assume small motions about this configuration; i.e.,[Kg(u)] ≈ [Kg(uS)]. Introducing
u = u− uS, the computational dynamical model can then be written as

[M ]ü(t) + [C]u̇(t) + ([K] + [Kg(uS)])u(t) = g(t) + fbit(u̇),

u(0) = u0, u̇(0) = v0,
(22)

in which [M ] and[K] are the mass and stiffness matrices. The proportional damping matrix[C] = α [M ] + β ([K] +
[Kg(uS)]) (α andβ are positive constants) is added a posteriori to the computational model. The initial conditions are
defined byu0 andv0. The force vector related to the bit-rock interaction (force and torque at the bit) isfbit and the
imposed rotation at the top (Dirichlet boundary condition) is included ing, which is the source force (input energy).

2.9 Reduced Computational Model

To speed up the numerical simulations, the computational model is reduced projecting the nonlinear dynamical equa-
tion on a subspace spanned by an appropriated basis. In the present paper, the basis used is made up of suitable normal
modes. The normal modes are constructed from the following generalized eigenvalue problem:

([K] + [Kg(uS)])φ = ω2[M ]φ , (23)

whereφi is theith normal mode andωi is the corresponding natural frequency. The reduced model is written as

u(t) = [Φ] q(t),

[Mr]q̈(t)+[Cr]q̇(t)+[Kr]q(t) = [Φ]T [g(t)+fbit([Φ] q̇)],

q(0) = q0, q̇(0) = v0,

(24)

in which q0 andv0 are the initial conditions and where[Φ] is the (m × n) real matrix composed of then selected
normal modes and

[Mr] = [Φ]T [M ][Φ], [Cr] = [Φ]T [C][Φ],

[Kr] = [Φ]T ([K] + [Kg(uS)])[Φ] (25)

are the reduced matrices.
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3. PROBABILISTIC MODEL

The maximum entropy principle [20] is used to construct the probabilistic models for the uncertain parameters. This
is, in the opinion of the authors, the best strategy to choose a probabilistic model (when data are limited). The resulting
distribution obtained by the maximum entropy principle is always consistent with the information/constraints given
about the random variable. If the information is consistent with the physics, then so are the obtained probability
density functions.

The parameters modeled as random variables are the parameters of the bit-rock interaction model [fc, µbit, α1,
α2; see Eq. (20)] and the imposed rotational speed at the topω0. The reason to choose these parameters is that the
parameters of the bit-rock interaction are hard to identify, and the top speed is the main driven force of the whole
system; therefore, it is also a quantity of interest. In a real drilling operation, this speed might be different from its
nominal value; it may vary, or it may be a little lower or upper, compared to its nominal value.

Let {Y1, Y2, Y3, Y4, Y5} represent the random variables related to the parameters{fc, µbit, α1,α2, ω0}. The prob-
ability density functions of the random variables are obtained solving the following optimization problem:

p∗Y = arg max
pY ∈ Cp

S(pY ) , (26)

wherep∗Y is the optimal probability density function such that∀pY ∈ Cp, S(p∗Y ) ≥ S(pY ), andCp is the set of
admissible probability density functions that respect the available information presented in the sequence. The Shannon
entropy measureS is defined as [21]:

S(pY ) = −
∫

supp

pY ln (pY )dy , (27)

where supp is the support of the probability distribution. It should be noticed that if no information is known about
the dependency among the random variables, the Maximum Entropy Principle yields independent random variables;
which is the case of the present analysis. We will reason the available information for all of the random variables (Y )
the following way:

1. To keep the consistency with the formulation used, all the random variables should be positive (fc is a particular
case, see the note below). Therefore, we consider the support]0, +∞[.

2. As an initial computational model, we will take the nominal parameters to be the mean of the random variables.
Therefore, the mean value is givenE{Y } = Y .

3. We would like the random variables to have small probabilities asY approaches zero, since the probability of
Y to be close to zero should be very small. To apply this condition we useE{ln(Y )} = |c| < +∞.

Note: the random variableY1 (related tofc) is always positive, but the reaction force should be negative. As a trick, we
consider (−Y1) in the simulations; hence, the same reasoning applies. Note that we do not allow negative values for the
rotation speed (ω0) and for the bit-rock parameters (µbit, α1, α2) to be consistent with our formulation. Nevertheless,
this was a choice, the support could be set more flexibly or differently, depending on how one reasons things. Thus,
there is more than one way to reason the available information; for instance, if we only give the information of the
supports[Ymin, Ymax] (bounded support) this yields the uniform probability density function in this range.

Applying the maximum entropy principle with the information given in the above list (and, of course, the nor-
malization condition) yields the gamma probability density function with meanY and coefficient of variationδY =
σY /Y , whereσY is the standard deviation ofY . Finally, verify that this random variable has finite variance, which
makes sense from the physical point of view. In addition, this random variable verifies that the random torque at
the bit Tbit(t) and the random rotational speed of the bitΩbit(t) are second-order random processes; i.e., they have
finite variance, which makes sense from the physical point of view. As a final comment, this probabilistic model is
not necessarily the best one; it is simply the least prejudice probabilistic model given the above constraints. Yet, we
emphasize that the procedure of constructing a probabilistic model using the maximum entropy principle is preferable
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than just picking up an ad hoc probabilistic model; on the other hand, if data are available, there are other interesting
strategies, such as adjusting the coefficient of a polynomial chaos expansion, Bayesian statistics, etc.

Finally, the deterministic system [Eq. (28)] becomes stochastic:

U(t) = [Ψ] Q(t),

[Mr]Q̈(t)+[Cr]Q̇(t)+[Kr]Q(t) = [Ψ]T (G(t)+Fbit([Ψ] Q̇(t))),

q(0) = q0, q̇(0) = v0,

(28)

whereU(t) is the random response. The source termG(t) is random because ofY5 (related to the imposed speed
at the topω0), and the bit-rock interaction force vectorFbit is random because ofY1, Y2, Y3, andY4 (related to the
parameters of the bit-rock interaction modelfc, µbit, α1, andα2). Besides these two random vectors, the random
character ofY1 (related to the initial reaction force at the bitfc) makes the initial prestressed configuration [Eq. (21)]
and the natural frequencies and normal modes [Eq. (23)] random. Therefore,[Ψ], [M r], [Cr], and[Kr] are random
matrices.

The Monte Carlo method [22] is used to obtain the statistics of the responses of Eq. (28); i.e., for each realization
of the independent random variablesYi (i = {1, 2, .., 5}) the deterministic system is numerically integrated. The
convergence is computed by the function conv(ns) = (1/ns)

∑ns

j=1

∫ t1
t0
||U(t, sj)||2dt, wherens is the number of

Monte Carlo samplings.

4. NUMERICAL RESULTS

First the deterministic system is simulated and, then, eachYi is considered separately forδYi = {5%, 20%} (i =
{1, 2, .., 5}) (see Section 3). The influence of each random parameter in the response of the system (axial and torsional
displacements) is analyzed. Finally, all the random parameters are taken into account together. For the numerical
integration in time, the explicit Runge-Kutta scheme of fourth-order and adapted time step was applied.

Typical values of a drill string are used: the1600 m drill-string is composed of steel tubes (E = 200 GPa,ρ = 7850
kg/m3). The first1400 m are composed of tubes with external diameter120 mm and internal diameter9.5 mm; the
last200 m are composed of thicker tubes (bottom hole assembly) with external diameter150 mm. The parameters of
the bit-rock interaction model aref0 = 50 kN, fc = −100 kN, α1 = 2, α2 = 1, andµbit = 0.04 (data used in [14]).
The damping constants areα = 1× 10−1 andβ = 8× 10−5, and we set[Cr(1, 1)] = 0, which means that there is no
damping related to the axial rigid body mode. The column is discretized in120 finite elements, and the reduced-order
model is composed of10 torsional and2 axial modes (one is the rigid body mode).

4.1 Deterministic Response

In this section, we analyze the relevance of considering the prestressed state for this problem (Section 4.1.1), and we
investigate how many axial and torsional modes are needed in the reduced-order model (Section 4.1.2).

4.1.1 Natural Frequencies

Tables 1 and 2 show a comparison of the torsional and axial natural frequencies of the system with and without the
prestressed configuration. The percent errors of the natural frequencies are very small; a similar result is verified for
the normal modes (small errors). The conclusion is that the prestressed configuration is not important for this problem
(at least for the parameters used in the analysis). It happens that it affects considerably the lateral response, which
is not taken into consideration in the present analysis. Despite this fact, the prestressed configuration is taken into
account in the numerical analysis, since it does not increase the computational time.

4.1.2 Reduced-Order Model

In the construction of the reduced-order model, the projection basis is generated by selected normal modes. To achieve
convergence, the first axial mode and the 10 first torsional modes were chosen, after several tests.
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TABLE 1: First torsional natural frequencies in Hertz; comparing the system with and without the prestressed con-
figuration.
Configuration First torsional natural frequencies (Hz)
No prestress 0.3679 1.2275 2.2039 3.2179 4.2411 5.2575 6.2380 7.1004 7.8407 8.7130
Prestressed 0.3681 1.2281 2.2049 3.2194 4.2431 5.2599 6.2407 7.1028 7.8435 8.7168
Percent error 0.06% 0.05% 0.05% 0.05% 0.05% 0.05% 0.04% 0.03% 0.04% 0.04%

TABLE 2: First axial natural frequencies in Hertz; comparing the system with and without the prestressed configura-
tion.
Configuration First axial natural frequencies (Hz)
No prestress 1.4168 3.0166 4.7244 6.4701 8.2178 9.9314 11.5382 12.9613 14.3927 16.0154
Prestressed 1.4173 3.0179 4.7266 6.4731 8.2216 9.9358 11.5428 12.9659 14.3985 16.0226
Percent error 0.04% 0.04% 0.05% 0.05% 0.05% 0.04% 0.04% 0.04% 0.04% 0.04%

Figure 1 shows the frequency spectrum of the axial speed of the bit (rate of penetration). For the dynamics ana-
lyzed, only one axial mode (together with a rigid body mode) is necessary to get a good result; it should be noticed
that in the axial direction the deterministic system is linear but the stochastic system is nonlinear due to the relation
sin(Ω0), whereΩ0 is the random variable related to the imposed top speed. Things are more complicated when the
torsional vibration is analyzed because the bit-rock interaction is nonlinear. Figure 2 shows a comparison of the re-
sponse of the rotational speed of the bit when one torsional mode is used and when 10 torsional modes are used in the
reduced-order model. It is clear that one torsional mode is not sufficient to represent the dynamics of this system. Note
also the stick-slip behavior of the response; i.e., sometimes the bit gets stuck (ωbit = 0), then it slips, with rotational
speed varying from 0 to 300 rpm (the imposed nominal speed at the top is 100 rpm).

4.2 Stochastic Response

A careful analysis was carried out separately for each random variable and then together for all random variables.
Figure 3 shows the convergence function for the Monte Carlo samplings withδYi = 0.20 (i = 1, 2, .., 5); a reasonable
convergence is achieved with 400 samplings.

Analyzing the sensitivity of the bit angular speed for each case, a curious result is observed in which the random
variables considered in the analysis affect the dispersion of the response (bit angular speed) in a similar manner: the

0.5 1 1.5 2 2.5 3 3.5 4

10
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10
−1

Frequency spectrum, ROP

freq [Hz]

sp
ee

d 
[m

/s
]

 

 

10 axial modes
1 axial mode

FIG. 1: Frequency spectrum of the rate of penetration of the bit for two approximations: 10 torsional modes and 10
axial modes versus 10 torsional modes and 1 axial mode. The two peaks observed are related to the first axial natural
frequency (1.41 Hz) and to the imposed rotation at the top (100 rpm = 1.67 Hz).
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FIG. 2: Angular speed of the bit for two approximations, 10 torsional modes and 10 axial modes versus 1 torsional
mode and 10 axial modes: (a) time response and (b) zoom image.
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FIG. 3: Convergence of the Monte Carlo simulation.

dispersion of the response (standard deviation over the mean at each instant) is about 0.85 [see Fig. 4(a)], regardless
of the uncertainty analyzed. This happens because in all Monte Carlo samplings there is stick-slip, and the bit angular
speed oscillates between 0 and 300 rpm. However, the dispersion in the frequency domain is quite different [see
Fig. 4(b)].

It should be noted that the level of uncertainty of the random variablesYi (i = 1, 2, .., 5) was assumed to be
δ = 0.05 or δ = 0.20. Actually, a stochastic inverse problem has to be performed to identify the dispersion level of
each parameter of the system [for instance, we would expect the uncertainty related to the top speed (ω0) to be smaller
than the uncertainty of a bit-rock interaction parameter such asα1]. The identification (which is a stochastic inverse
problem) might be done, for example, using the maximum likelihood method [6] or using a Bayesian approach [23].

We are mostly concerned with the torsional vibration of the column at the bit (bit angular speed); nevertheless, the
bit axial speed (which is the rate of penetration) is also analyzed. It should be mentioned that for the model considered
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FIG. 4: Dispersion (standard deviation over the mean at each instant) ofthe bit angular speed forδY5 = 0.05 and
δYi = 0.20 (i = 1, 2, .., 5): (a) time domain and (b) frequency domain.

in the present analysis the axial vibration of the column is not affected by uncertainties in the parametersµbit, α1 and
α2, and is little affected by uncertainties in the parameterfc. Note that the axial vibration is coupled with the torsional
one only through the rotational speed at the top (see Section 2.6), and the initial prestressed configuration (related to
fc) does not have much influence on the axial vibration (see Section 4.1.1).

Figures 5–7 help us to analyze how the uncertainties are propagate throughout the nonlinear system. Figure 5
shows the 95% confidence region of the random response (axial and angular speed of the bit) together with the
response of the nominal model, considering an uncertain top speed withδY5 = 0.05; and Fig. 6 shows the same
graphic when all the parameters are considered uncertain:δYi = 0.20 (i = 1, 2, .., 5). As expected, as the uncertainties
on the random input parameters increase, the uncertainty of the response also increases.
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FIG. 5: (a) Axial speed and (b) angular speed of the bit: 95% confidence region (thick dark line), mean of the
stochastic response (thin dark line), and response of the nominal model (blue line), considering an uncertain top speed
with δY5 = 0.05.
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FIG. 6: (a) Axial speed and (b) angular speed of the bit: 95% confidence region (thick dark line), mean of the
stochastic response (thin dark line), and response of the nominal model (blue line), when all the parameters are
considered uncertain withδYi = 0.20 (i = 1, 2, .., 5).
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FIG. 7: Frequency spectrum of the bit angular speed (a)δY5 = 0.05 and (b)δYi = 0.20 (i = 1, 2, .., 5): 95%
confidence region (thick dark line), mean of the stochastic response (thin dark line), and response of the nominal
model (blue line).

Figures 5(a) and 6(a) show an increasing axial speed of the bit; it increases because of the constant axial force
imposed at the bit (see Section 2.6). The behavior of the bit angular speed is similar for each Monte Carlo realization,
and the values of this speed are between 0 and 350 rpm; Figs. 5(b) and 6(b) show that the upper confidence interval is
close to the maximum response of the nominal model. Finally, Fig. 7 shows the random frequency spectrum, where a
broad band spectrum is observed.

Let us consider now thatµbit = 0.004 (the former bit-rock interaction usedµbit = 0.04). This new value can be
interpreted as the column facing a softer soil, easier to be drilled. In this case, the bit angular speed presents a different
behavior as shown in Fig. 8, where three Monte Carlo samplings are drawn for the two different values ofµbit. When
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FIG. 8: Three Monte Carlo samplings of the bit angular speed for (a)µbit = 0.04 and (b)µbit = 0.004; δYi
= 0.20

(i = 1, 2, .., 5).

µbit = 0.04 [former case, see Fig. 8(a)], the response has many oscillations and the stick-slip phenomenon is observed
for all of the three Monte Carlo samplings. On the other hand, whenµbit = 0.004 [see Fig. 8(b)], the response has less
oscillations. In addition, for some combination of the parameters there is stick-slip, and for others there is not.

If we define a stick-slip stability factor using the maximum and minimum values of the bit angular speed:ss =
(ωbmax− ωbmin)/(ωbmax + ωbmin), and a limit ofssmax = 0.80. Then, we can compute the probability of stick-
slip to occur; i.e., the probability ofss to be greater thanssmax. For example, the probability of stick-slip to occur
whenµbit = 0.04 is 100%, and forµbit = 0.004, the probability of stick-slip is 50%. If the probability of stick-slip
occurrence was small, other techniques (such as subset simulations [24]) should be used to accelerate the stochastic
convergence, since many more samplings would be needed to achieve it.

5. CONCLUDING REMARKS

This paper has analyzed the nonlinear dynamics of a drill-string with uncertainties on the imposed speed and on the
bit-rock parameters. The impact of these uncertainties on the dynamical response of the system has been investigated.

The continuum deterministic system is discretized by means of the finite-element method and a reduced-order
model is constructed using the normal modes of the prestressed structure; only axial and torsional modes are included
in the analysis. The results show that: (1) the initial prestressed configuration does not change significantly the natural
frequencies and the normal modes of the structure; and (2) only two axial modes (one of which is a rigid body
mode) and 10 torsional modes are necessary to represent the dynamics of the system, for the range of parameters
analyzed.

Concerning the stochastic modeling, in the first step of the analysis, the parameters of the bit-rock interaction
model, as well as the top speed, have been modeled with random variables and their probabilistic models have been
constructed applying the maximum entropy principle. In the second step, the Monte Carlo method has been used to
approximate the resulting stochastic differential equations.

The influence of each random variable on the system response is analyzed separately and also together, using
different levels of uncertainty. Finally, the model has been used to compute the probability of occurrence of stick-
slip. Two different sets of parameters have been considered for the bit-rock interaction model. In the first set there
has been a 100% probability of stick-slip, and in the second set there has been a 50% probability. From which, it
can be concluded that, depending on the set of parameters of the system the sensitivity can be very high. In this
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sense, a careful identification procedure has to be done, such that the computational model can be used most effec-
tively.
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