图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
电信和无线电工程
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN 打印: 0040-2508
ISSN 在线: 1943-6009

卷:
卷 78, 2019 卷 77, 2018 卷 76, 2017 卷 75, 2016 卷 74, 2015 卷 73, 2014 卷 72, 2013 卷 71, 2012 卷 70, 2011 卷 69, 2010 卷 68, 2009 卷 67, 2008 卷 66, 2007 卷 65, 2006 卷 64, 2005 卷 63, 2005 卷 62, 2004 卷 61, 2004 卷 60, 2003 卷 59, 2003 卷 58, 2002 卷 57, 2002 卷 56, 2001 卷 55, 2001 卷 54, 2000 卷 53, 1999 卷 52, 1998 卷 51, 1997

电信和无线电工程

DOI: 10.1615/TelecomRadEng.v78.i5.40
pages 419-427

ANALYSIS OF THE IMPLEMENTATION COMPLEXITY OF CRYPTOSYSTEM BASED ON THE SUZUKI GROUP

G. Z. Khalimov
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
E. V. Kotukh
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
Yu. O. Serhiychuk
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine
O. S. Marukhnenko
Kharkiv National University of Radio Electronics, 14 Nauka Ave, Kharkiv 61166, Ukraine

ABSTRACT

Implementations for cryptosystems of finite groups based on the logarithmic signature and covering are considered. A logarithmic signature is exemplified by a permutation group with the asymmetry of encryption and decryption algorithms. Decryption of the improved cryptosystem MST3 in Suzuki 2-group with the order of the group q2 is given. The Suzuki 2-group use has a significant advantage in implementation, due to the large center and simple group operation. Cost estimates for encryption, decryption and comparison with the RSA algorithm are obtained.

REFERENCES

  1. Wagner, N.R. and Magyarik, M.R., (1984) , A Public Key Cryptosystem Based on the Word Problem, Advances in Cryptology. Proceedings of CRYPTO, pp. 19-36, edited by G.R. Blakley and D. Chaum, Lecture Notes in Computer Science 196. Berlin: Springer, 1985.

  2. Wagner, N.R., (1984) , Searching for Public-Key Cryptosystems, Proceedings of the Symposium on Security and Privacy (SSP ’84), pp. 91-98, Los Alamitos, CA: IEEE Computer Society Press.

  3. Magliveras, S.S., (1986) , A Cryptosystem from Logarithmic Signatures of Finite Groups, Proceedings of the 29th Midwest Symposium on Circuits and Systems, pp. 972-975. Amsterdam: Elsevier Publishing Company.

  4. Lempken, W., Magliveras, S.S., Tran van Trung, and Wei, W. (2009), A public key cryptosystem based on non-abelian finite groups, J. of Cryptology, 22, pp. 62-74.

  5. Higman, G., (1963) , Suzuki 2-groups.Ill, J. Mathematic, 7, pp. 79-96.

  6. Pavol Svaba, (2011) , Covers and logarithmic signatures of finite groups in cryptography, Dissertation, Bratislava, Slowakische Republik.


Articles with similar content:

On Identification of Linear Stationary Systems
Journal of Automation and Information Sciences, Vol.40, 2008, issue 7
Alexander S. Apostolyuk, Vladimir B. Larin
Non-Classical Diffusion Boxes Using the Golden Binary Self-Similar Sequence
Telecommunications and Radio Engineering, Vol.56, 2001, issue 4&5
Ruben Vazquez-Medina, Hector Manuel Perez-Meana, Jose Luis Del-Rio-Correa
ON HIDING DATA INTO THE STRUCTURE OF THE FAT FAMILY FILE SYSTEM
Telecommunications and Radio Engineering, Vol.78, 2019, issue 11
A.O. Kolhatin, A. A. Kuznetsov, K.Yu. Shekhanin, E.E. Demenko
Non-Classical Diffusion Boxes Using the Golden Binary Self-Similar Sequence
Telecommunications and Radio Engineering, Vol.56, 2001, issue 1
Ruben Vazquez-Medina, Hector Manuel Perez-Meana, Jose Luis Del-Rio-Correa
DIFFERENCE DOPPLER CENTROID ESTIMATION METHOD WITH HIGH SPATIAL RESOLUTION
Radio Physics and Radio Astronomy, Vol.1, 2010, issue 2
Ye. V. Dukhopelnykova