图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
电信和无线电工程
SJR: 0.202 SNIP: 0.2 CiteScore™: 0.23

ISSN 打印: 0040-2508
ISSN 在线: 1943-6009

卷:
卷 78, 2019 卷 77, 2018 卷 76, 2017 卷 75, 2016 卷 74, 2015 卷 73, 2014 卷 72, 2013 卷 71, 2012 卷 70, 2011 卷 69, 2010 卷 68, 2009 卷 67, 2008 卷 66, 2007 卷 65, 2006 卷 64, 2005 卷 63, 2005 卷 62, 2004 卷 61, 2004 卷 60, 2003 卷 59, 2003 卷 58, 2002 卷 57, 2002 卷 56, 2001 卷 55, 2001 卷 54, 2000 卷 53, 1999 卷 52, 1998 卷 51, 1997

电信和无线电工程

DOI: 10.1615/TelecomRadEng.v77.i17.10
pages 1485-1495

INFLUENCE OF EXCITATION METHOD ON THE INTEGRAL CHARACTERISTICS OF THE CIRCULAR PATCH MONOPOLE ANTENNAS

Sergey Pogarsky
V.N. Karazin Kharkov National University
Leonid M. Lytvynenko
Institute of Radio Astronomy, National Academy of Sciences of Ukraine, 4 Mystetstv St., Kharkiv 61002, Ukraine
D. V. Mayboroda
V. Karazin National University of Kharkiv, 4 Svobody Sq., Kharkiv 61022, Ukraine
A. V. Poznyakov
V. Karazin National University of Kharkiv, 4, Svobody Square, Kharkiv, 61077, Ukraine

ABSTRACT

The paper presents the results of influence of circular-patch monopole antennas excitation methods on their integral characteristics. The results are obtained by use of Finite Element Method (FEM). The obtained data show that method of excitation of monopole microstrip structures has significant influence on their integral characteristics. The results of investigations of three methods of excitation of monopole microstrip antennas with a complex configuration of radiators are presented. The spectral characteristics, matching characteristics with external circuits, the pattern characteristics are presented. The obtained results show that monopole microstrip resonators with complex configuration of radiators can be successfully used to provide the necessary integral parameters and to form the required parameters of radiated fields.

REFERENCES

  1. Lytvynenko, L.N., Pogarsky, S.A., Mayboroda D.V., and Poznyakov, A.V., (2017) , Microstrip antenna with complex configuration of radiators, 11-th International Conference on Antenna Theory and Techniques, ICATT 2017, Kyiv, Ukraine, (http: // doi.org/10.1109.

  2. Labadie, N.R., Sharma, S.K., and Rebeiz, G.M., (2014) , A Circularly Polarized Multiple Radiating Mode Microstrip Antenna for Satellite Receive Applications, IEEE Trans. Antennas Propag., 62, pp. 3490-3500. (DOI: 10.1109/TAP.2014.2320860).

  3. Pan, Y.M., Zheng, S.Y., and Hu, B.J., (2014) , Wideband and Low-Profile Omnidirectional Circularly Polarized Patch Antenna, IEEE Trans. Antennas Propag., 62, pp. 4347-4351. (DOI: 10.1109/TAP.2014.2323412).

  4. Bahl, I.J., Stuchly, S.S., and Stuchly, M.A., (1980) , A new microstrip radiator for medical applications, IEEE Trans. Microw. Theory Tech., 28, pp. 1464-1469. (DOI: 10.1109/TMTT.1980.1130268).

  5. Wolf, I., (1972) , Microstrip bandpass filters using degenerate modes of a microstrip ring resonators, Electron. Lett., 8(12), pp. 302-303.(DOI: 10.1049/el:19720223).

  6. Khilla, A.-M., (1981) , Simple design of x-junction microstrip circulators, Electron. Lett., 17(19), pp. 681-682. (DOI: 10.1049/el:19810476).

  7. Khilla, A.-M., (1981) , Analysis of wide-band microstrip circulators by point-matching technique, IEEE MTT-S International Microwave Symposium Digest, Los Angeles, USA. (DOI: 10.1109/MWSYM.1981.1129899).

  8. Monthasuwan, J., Saetiaw, C., and Thongsopa, C., (2013) , Curved rectangular patch array antenna using flexible copper sheet for small missile application, Int. J. of Electrical, Energetic, Electronic and Comm. Eng., 7(11), pp. 1420-1424. (DOI: scholar.waset.org/1999.5/17411).

  9. Silin, R.A. and Sazonov, V.P., (1966) , Slowing Down Systems, Moscow, Russia: Sov. Radio, (in Russian). (http://www.twirpx.com/file/247574).

  10. Maiboroda, D.V. and Pogarsky, S.A., (2014) , On the choice of optimal topology of a reflecting module based upon the circular-disk microstrip structure, Telecommunications and Radio Engineering, 73(19), pp. 1713-1726. (DOI: 10.1615/TelecomRadEng.v73.i19.20).

  11. Mayboroda, D.V. and Pogarsky, S.A., (2016) , Optimization of the integral parameters of disk microstrip antennas with radiators of complex geometry, Telecommunications and Radio Engineering, 75(19), pp. 1713-1726. (DOI: 10.1615/TelecomRadEng.v75.i9.10).

  12. Mayboroda, D.V. and Pogarsky, S.A., (2016) , Tunable circular microstrip antenna with additional shorting-vias elements, Patent UA, no.107847. (http://uapatents.com/7-107847-perestroyuvana- diskova-mikrosmuzhkova-antena-z-dodatkovimi-zakorochuvalnimi-elementami.html).

  13. Mayboroda, D.V. and Pogarsky S.A., (2016) , Disk microstrip antenna with log-periodic radiators, Patent UA, no. 112248. (http://uapatents.com/8-112248-diskova-mikrosmuzhkova-antena-z- logoperiodichnimi-viprominyuvachami.html).


Articles with similar content:

Statistical Characteristics of Radiation Pattern of the Ring Antenna Array
Telecommunications and Radio Engineering, Vol.67, 2008, issue 20
G. A. Levagin, V. I. Zamyatin
Antenna for Navigational Shipborne Millimeter-Wave Radar
Telecommunications and Radio Engineering, Vol.65, 2006, issue 16-20
A. N. Nechiporenko, L. D. Fesenko
CYLINDRICAL MICROSTRIP ANTENNAS WITH RADIATORS OF ARBITRARY GEOMETRY EXCITED BY A MICROSTRIP LINE
Telecommunications and Radio Engineering, Vol.70, 2011, issue 5
A. Ye. Svezhentsev
EXCITATION OF WHISPERING GALLERY MODES IN AN ANISOTROPIC SPHERE ILLUMINATED BY A WAVEGUIDE RADIATOR FIELD
Telecommunications and Radio Engineering, Vol.69, 2010, issue 6
A. Ya. Kirichenko, A. Ye. Kogut
AXISYMMETRIC ELECTROMAGNETIC EXCITATION OF A METALLIC DISCONE SCATTERER
Telecommunications and Radio Engineering, Vol.74, 2015, issue 7
D. B. Kuryliak, O. M. Sharabura