图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
环境病理学,毒理学和肿瘤学期刊
影响因子: 1.241 5年影响因子: 1.349 SJR: 0.356 SNIP: 0.613 CiteScore™: 1.61

ISSN 打印: 0731-8898
ISSN 在线: 2162-6537

环境病理学,毒理学和肿瘤学期刊

DOI: 10.1615/JEnvironPatholToxicolOncol.2013007156
pages 229-240

Study of the Protective Effects of Katha (Heartwood Extract of Acacia catechu) in Liver Damage Induced by Iron Overload

Bibhabasu Hazra
Division of Molecular Medicine, Bose Institute, Kolkata, India
Rhitajit Sarkar
Division of Molecular Medicine, Bose Institute, Kolkata, India
Nikhil Baban Ghate
Division of Molecular Medicine, Bose Institute, Kolkata, India
Dipankar Chaudhuri
Division of Molecular Medicine, Bose Institute, Kolkata, India
Nripendranath Mandal
Division of Molecular Medicine, Bose Institute, Kolkata, India

ABSTRACT

This study evaluated the ameliorating effect of 70% methanol extract of Acacia catechu heartwood, or Katha (ACME) on liver injury induced by iron overload. Iron overload in mice was caused by intraperitoneal administration of 100 mg/kg iron-dextran. ACME was administered orally for 21 days, starting from the day after the first iron-dextran injection. The biochemical markers of hepatic damage and liver iron, protein carbonyl, and hydroxyproline contents were measured in response to the oral administration of ACME. Apart from those, the release of iron from ferritin by ACME was further assessed to determine the efficiency of ACME as an iron-chelating drug. Treatment with different doses of ACME (50, 100, and 200 mg/kg body weight) showed dose-dependent reductions in liver iron, lipid peroxidation, protein oxidation, liver fibrosis, serum enzymes, and ferritin. The antioxidant enzymes levels were enhanced and the reductive release of ferritin iron increased significantly with gradually increasing concentrations of ACME. These results indicate that ACME has a potent hepatoprotective action against hepatic damage induced by iron overload in mice, probably by ameliorating the antioxidant defense activities and reductively releasing ferritin iron.