图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
环境病理学,毒理学和肿瘤学期刊
影响因子: 1.241 5年影响因子: 1.349 SJR: 0.519 SNIP: 0.613 CiteScore™: 1.61

ISSN 打印: 0731-8898
ISSN 在线: 2162-6537

环境病理学,毒理学和肿瘤学期刊

DOI: 10.1615/JEnvironPatholToxicolOncol.2013006923
pages 177-187

Reversal of Lead-Induced Toxicity Due to the Effect of Antioxidants

Samta Sharma
Reproductive Biology and Toxicology Laboratory, School of Studies in Zoology, Jiwaji University, Gwalior-474011, India
Sadhana Shrivastava
Reproductive Biology and Toxicology Labora¬tory, UNESCO Satellite Center of Trace Element Research, School of Studies in Zoology, Jiwaji University, Gwalior 474011, India
Sangeeta Shukla
School of Studies in Zoology, Jiwaji University, Gwalior 474011, India

ABSTRACT

This study was designated to evaluate the protective effect of glutathione (GSH) and N-acetyl cysteine (NAC) in reducing the concentration of lead acetate in blood and soft tissues (liver, kidney, and brain) and their ability to restore altered hematopoietic, hepatic, renal, and other biochemical variables that are indicative of tissue oxidative stress in male rats.
Male Wistar rats (150 ± 10 g) were randomly divided into 6 groups. Group 1 served as control. Group 2 served as experimental control was administered lead acetate (50 mg/kg intraperitoneally) for 3 days. Group 3 and 4 served as therapeutic controls. Animals in groups 5 and 6 received reduced GSH (1mg/kg intraperitoneally) and NAC (50 mg/kg orally) for 3 days after the administration of lead acetate, as in group 2.
The levels of hepatic and renal markers such as alanine aminotransferase, aspartate aminotransferase, triglycerides, cholesterol, urea, and uric acid were significantly increased (P ≤ 0.05) following administration of lead acetate. Administration of GSH and NAC provided significant protection to thiobarbituric acid reactive substances levels and reduced GSH content in tissues. On the other hand, significant recovery in lead-sensitive biochemical indices, like δ-aminolevulinic acid dehydratase, δ-aminolevulinic acid, and lead concentration in blood and soft tissues also were observed. It was concluded that NAC provided maximum protection compared with reduced GSH.


Articles with similar content:

Toxic Effects of Lead Exposure in Rats: Involvement of Oxidative Stress, Genotoxic Effect, and the Beneficial Role of N-Acetylcysteine Supplemented with Selenium
Journal of Environmental Pathology, Toxicology and Oncology, Vol.33, 2014, issue 1
Samta Sharma, Bhanu Pratap Singh Raghuvanshi, Sangeeta Shukla
Reversal of Lead-Induced Acute Toxicity by Lipoic Acid with Nutritional Supplements in Male Wistar Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.35, 2016, issue 2
Sadhana Shrivastava, Yamini Sharma, Sangeeta Shukla
Dose-Dependent Effects of Ethanol on Lead-Induced Oxidative Stress in Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.31, 2012, issue 1
Swaran Flora, Pratibha Gautam, Nidhi Dwivedi
The Influence of Gingerol Treatment on Aluminum Toxicity in Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 1
Sadhana Shrivastava
D-Pinitol Protects Against Carbon Tetrachloride−Induced Hepatotoxicity in Rats
Journal of Environmental Pathology, Toxicology and Oncology, Vol.34, 2015, issue 4
Peramaiyan Rajendran, Maruthaiveeran Periyasamy Balasubramanian, Natarajan Nandakumar , Boobathy Lokeshkumar, Thamaraiselvan Rengarajan