图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.142 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2017016259
pages 501-527

PARAFFIN-BASED SOLID FUELS FOR HYBRID PROPULSION FILLED WITH LITHIUM ALUMINUM HYDRIDE: THERMAL, MECHANICAL, AND BALLISTIC CHARACTERIZATION

Matteo Boiocchi
Aerospace Science and Technology Department, Politecnico di Milano, I-20156 Milano, Italy
Luciano Galfetti
Politecnico di Milano
Luca Di Landro
Aerospace Science and Technology Department, Politecnico di Milano, I-20156 Milano, Italy

ABSTRACT

A chemical, thermal, mechanical, and ballistic investigation of paraffin-based solid fuels filled with lithium aluminum hydride [(LAH) LiAlH4] for hybrid propulsion is presented in this paper. Two different formulations containing 5% and 10% of polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene, a styrene-based thermoplastic elastomer [i.e., styrene-ethylene-butylene-styrene grafted with maleic anhydride (SEBS-MA)], were investigated to strengthen paraffin waxes. Two LAH mass fractions were considered for each paraffin-based blend (5% and 10%), for a total of four fuel formulations. The paraffin-based blends filled with LiAlH4 were found to be stable when exposed to air. The rheological properties were investigated using a parallel-plate rheometer giving evidence of the link between the elastic modulus (G') evolution and the thermal behavior of LAH. The thermal properties were studied using differential scanning calorimetry in order to obtain data on the typical transitions of paraffin waxes (solid/solid and solid/liquid) and also on the thermal decomposition of the added energetic filler. A manufacturing technique for the production of homogeneous blends strengthened with SEBS-MA and filled with LAH is described. Firing tests were performed in a laboratory-scale hybrid motor using gaseous oxygen; the local and instantaneous regression rates were measured using a fiber-optic technique. The behavior of paraffin waxes blended with the selected SEBS-MA thermoplastic elastomer and filled with LAH is discussed.


Articles with similar content:

EVALUATION OF CaCl2−SILICA GEL SORBENT FOR WATER SORPTION COOLING SYSTEMS
Heat Pipe Science and Technology, An International Journal, Vol.6, 2015, issue 3-4
Claire McCague, Khorshid Fayazmanesh, Cecilia Berlanga, Majid Bahrami
CHARACTERIZATION OF RUBBERY COMPOSITE PROPELLANT AND ITS COMPATIBILITY WITH THE COMPONENTS OF THE 70-mm. ROCKET ENGINES
International Journal of Energetic Materials and Chemical Propulsion, Vol.6, 2007, issue 4
Rodrigo F. A. Guerra, Enrique F. Quinones
THERMAL STABILITY AND DEGRADATION CHARACTERISTICS OF IN-HOUSE DEVELOPED POLYMERIC MATERIAL
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Srikanta Dinda, Appala Naidu Uttaravalli
EFFECTS OF DIFFERENT DECELERATION AGENTS ON THE PROPERTIES OF HYDROXYL TERMINATED POLYETHER (HTPE)-BASED COMPOSITE SOLID PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.16, 2017, issue 2
Luigi T. DeLuca, Weiqiang Pang, XueZhong Fan, Huan Li, XiaoLong Fu, Ke Wang, JunQiang Li
CHARACTERISTICS OF CHEMICALLY MODIFIED AND NANOCOMPOSITE POLYMERS AS NOVEL FUELS FOR HYBRID ROCKET PROPULSION
International Journal of Energetic Materials and Chemical Propulsion, Vol.11, 2012, issue 6
Paul Joseph, Koki Kitagawa, Vasily Novozhilov, Toru Shimada