图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.142 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v8.i6.20
pages 489-500

INTERACTION BETWEEN TWO CYLINDERS IN A PULSE DETONATION ENGINE

Toshiyuki Tsuji
Department of Mechanical Engineering, Saitama University, 255, Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570 Japan
Shinichi Shirakawa
Department of Mechanical Engineering, Saitama University, 255, Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570 Japan
Teruo Yoshihashi
Department of Mechanical Engineering, Saitama University, 255, Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570 Japan
Tetsuro Obara
Department of Mechanical Engineering, Saitama University, 255, Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570 Japan
Shigeharu Ohyagi
Department of Mechanical Engineering, Saitama University, 255, Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570 Japan

ABSTRACT

This paper reports the results of an experimental study to determine the effects of interaction between two cylinders of a pulse detonation engine as well as to estimate the thermal efficiency of the system with a turbine. An interaction between the tubes occurs if a diffracted shock wave propagates into the other tube, which disturbs its filling process. The system is able to be operated in 40 Hz per tube, which means 80 Hz in total. The thermal efficiency of this system was estimated by measuring work done by a compressor, driven by the turbine. It is concluded that for designing a multi-cylinder system, it is important to consider the interference between the tubes and the nozzle.

REFERENCES

  1. Roy, G.D., Frolov, S.M., Borisov, A.A., and Netzer, D.W., Pulse Detonation Propulsion: Challenges, Current Status, and Future Perspective.

  2. Sakurai,T., Yamane, N., Obara,T., and Ohyagi, S., A Study on Thermodynamic Cycle of Pulse Detonation Gas Turbine Engine.

  3. Sakurai, T., Obara, T., Ohyagi, S., and Murayama, M., Experimental Study of Pulse Detonation Turbine Engine toward Power Generator.

  4. Maeda, S., Kasahara, J., Tanaka, K., Matsuo, A., and Endo, T., Performance Test of a Pulse Detonation Turbine Engine Using a Small Turbine.

  5. Adam R., Anthony F., and Anthony J.D., Experimental Investigations of an Axial Turbine Driven by a Multi-Tube Pulsed Detonation Combustor System.

  6. Hamazoe, R., Hino, T., Muro, H., Takemoto, M., Yatsufusa, T., Endo, T., Taki, S., and Kanemitsu, T., Improvement of Operation Frequency of the Multi-Tube Pulse Detonation Engine.

  7. Fuhua, M., Jeong-Yeol, C., and Vigor, Y., Thrust Chamber Dynamics and Propulsive Performance of Multi-Tube Pulse Detonation Engine.

  8. Aaron, J.G., Nicholas, C., and Ephraim, G., Performance Measurements of a Pulse Detonation Combustor Array Integrated with an Axial Flow Turbine.


Articles with similar content:

THE ADVANCED TECHNOLOGY OF PREVENTION OF THE ANOMALOUS COMBUSTION REGIMES DEVELOPMENT IN THE SUBMARINE'S BALLISTIC ROCKET WITH LARGE-SIZED SPRM
International Journal of Energetic Materials and Chemical Propulsion, Vol.5, 2002, issue 1-6
Alexander Lukin
The Use of a Phase Change Material within a Cylinder Wall in order to Detect Knock in a Gas SI Engine
ICHMT DIGITAL LIBRARY ONLINE, Vol.2, 2004, issue
Jerome Bellettre, Mohand Tazerout, Eric Ollivier
EXPERIMENTAL STUDY ON THE BLOWDOWN LOAD DURING THE STEAM GENERATOR STEAM LINE BREAK ACCIDENT IN THE EVOLUTIONARY PRESSURIZED WATER REACTOR
Second Thermal and Fluids Engineering Conference, Vol.38, 2017, issue
Ki-Yong Choi, Yu-Sun Park, Byoung-Uhn Bae, Kyoung-Ho Kang, Jongrok Kim, Nam-Hyun Choi
PERFORMANCE DEPENDENCY OF 120 mm MORTAR ON AMBIENT TEMPERATURE CONDITIONS
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 6
Eric Boyer, Kenneth K. Kuo, Heath T. Martin
HEAT TRANSFER AND FLOW CHARACTERISTICS OF ULTRA-MICRO STEAM INJECTOR AND ITS OPERATING CONDITION
International Heat Transfer Conference 16, Vol.7, 2018, issue
Akihiro Futsuta, Yutaka Abe, Akiko Kaneko, Yutaka Suzuki