图书馆订阅: Guest
国际能源材料和化学驱动期刊

每年出版 6 

ISSN 打印: 2150-766X

ISSN 在线: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

MANUFACTURING AND TESTING OF A DUAL-PROPELLANT NOZZLELESS BOOSTER TECHNOLOGY DEMONSTRATOR

卷 8, 册 6, 2009, pp. 541-554
DOI: 10.1615/IntJEnergeticMaterialsChemProp.v8.i6.60
Get accessGet access

摘要

The total impulse delivered by a nozzleless booster rocket motor is mainly determined by the burning rate and ballistic properties of its propellant. Propellants with low burning rate pressure exponents (n-values) and high burning rates permit significant increases in performance. It is common knowledge that ferrocene-based burning rate catalysts reduces the burning rate pressure exponent and increases the burning rate significantly. Therefore, ballistic properties produced by the ferrocene-grafted HTPB polymer, Butacene®, are highly effective in nozzleless booster motors. However, high burning rate Butacene-based propellants may produce a high initial pressure peak during the ignition phase of the nozzleless booster motor, which may necessitate the use of a stronger and thus heavier motor casing. One way to reduce this high ignition pressure is to design a dual-propellant grain that consists of two concentric propellant layers. A thin inner layer contains a propellant with a slightly lower burning rate, while the much larger outer layer consists of a higher burning rate Butacene-based propellant. In this case, the inner propellant layer consisted of a Fe2O3-based reduced smoke propellant, while the outer layer consisted of a Butacene-based reduced smoke propellant. Formulations and properties of the two propellants used in the manufacturing of the dual-propellant nozzleless booster motor are reported. A good bonding interface between the Butacene and Fe2O3 propellant layers was ensured by application of an isocyanate-based activation coat between the layers. A displacement casting process was used for the manufacturing of the dual-propellant grain. The results of the static test-firing of this nozzleless booster motor showed that the high ignition pressure was reduced by using the dual-propellant design concept.

参考文献
  1. Davenas, A., Solid Rocket Propulsion Technology.

  2. Procinsky, I.M. and McHale, C.A., Nozzleless Booster for Integral-Rocket-Ramjet Missile Systems.

  3. Atwood, A.I., Curran, P.O., Price, C.F., Boggs, T.L., and Booth, D., High Pressure Burning Rate Studies of Ammonium Perchlorate (AP)-Based Propellants.

  4. Lessard, P., Beaupré, F., and Brousseau, P., Burn Rate Studies of Composite Propellants Containing Ultra-Fine Metals.

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain