图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.142 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2013003803
pages 375-388

EFFECT OF BALLISTIC MODIFIERS ON THE BURN RATE OF EXTRUDED COMPOSITE PROPELLANT FORMULATIONS BASED ON THERMOPLASTIC ELASTOMERIC BINDER

K. S. Mulage
High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
A. K. Mishra
High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
R. N. Patkar
High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
S. H. Kharat
High Energy Materials Research Laboratory, Sutarwadi, Pune-411 021, India
Pawan Kumar Khanna
Defence Institute of Advanced Technology, Pune, 411025, India
Seema Dilip Kakade
High Energy Materials Research Laboratory, Pune, 411021, India

ABSTRACT

The effect of ballistic modifiers on the burn rate of extruded composite propellant (ECP) formulations primarily based on ammonium perchlorate (AP) as oxidizer, aluminum (Al) as metallic fuel, and thermoplastic polyurethane, viz., Irostic® as binder, has been investigated. The ballistic modifiers, viz., iron oxide (Fe2O3), copper chromite (CuCr2O4), and strontium carbonate (SrCO3), were studied in the concentration varying from 0.2 to 1.0 part above 100 parts of base composition. The results obtained reveal that the burn rate increases with increase in the concentration of Fe2O3 and CuCr2O4. Maximum burn rate enhancement is observed with 1 part of Fe2O3, which is of the order of 130%. The results are discussed in detail in the light of thermal decomposition data generated on polymer and propellant compositions using ballistic modifiers.


Articles with similar content:

THERMITE-BASED COMBUSTION SYNTHESIS OF NIOBIUM SILICIDES/Al2O3 COMPOSITES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.16, 2012, issue 1
Yu-Shan Huang, Chun-Liang Yeh
EVALUATION OF NANO-Fe3O4 IN COMPOSITE PROPELLANT FORMULATIONS
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 6
D. R. Kshirsagar, P. P. Singh, B. Bhattacharya, Mehilal, Sudhir
LOW-POWER LASER IGNITION OF ALUMINUM/METAL OXIDE NANOTHERMITES
International Journal of Energetic Materials and Chemical Propulsion, Vol.13, 2014, issue 6
Daniel Chamberland, Robert Stowe, Tommy Ringuette, Sophie Ringuette, Catalin Florin Petre, Suzanne Paradis
AMMONIUM DINITRAMIDE/GLYCIDYL AZIDE POLYMER (ADN/GAP) COMPOSITE PROPELLANTS WITH AND WITHOUT METALLIC FUELS
International Journal of Energetic Materials and Chemical Propulsion, Vol.16, 2017, issue 1
Volker Gettwert, Luigi T. DeLuca, Volker Weiser, Andrea Franzin, Manfred A. Bohn
HIGH-NITROGEN METAL COMPLEXES AS BURNING-RATE MODIFIERS FOR THE ALUMINUM-WATER PROPELLANT SYSTEM
International Journal of Energetic Materials and Chemical Propulsion, Vol.10, 2011, issue 2
Bryce C. Tappan, Benjamin Aaron Mason