图书馆订阅: Guest
国际能源材料和化学驱动期刊

每年出版 6 

ISSN 打印: 2150-766X

ISSN 在线: 2150-7678

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 0.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 0.7 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.1 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00016 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.18 SJR: 0.313 SNIP: 0.6 CiteScore™:: 1.6 H-Index: 16

Indexed in

COMBUSTION FEATURES OF NITRATE ESTER PLASTICIZED POLYETHER SOLID PROPELLANTS WITH ADN AND FOX-12 PARTICLES

卷 19, 册 1, 2020, pp. 11-23
DOI: 10.1615/IntJEnergeticMaterialsChemProp.2019027702
Get accessGet access

摘要

Several industrial and research nitrate ester plasticized polyether (NEPE) solid propellants with and without N-guanylurea-dinitramide (FOX-12 or GUDN) and ammonium dinitramide (ADN) particles, featuring the same nominal composition, were prepared. The combustion properties (strand burning rate, combustion flame structures, and the associated combustion temperature distribution) of propellants with FOX-12 and ADN were determined and also compared to those propellants without FOX-12 and ADN particles. It turned out that the performed NEPE solid propellants containing dual oxidizer particles (FOX-12 and ADN) can be prepared and cast safely. The addition of ADN particles to the propellant formulation can increase the burning rate and pressure exponent, and affect the combustion behavior, when comparing to the reference propellant. The combustion flame structures of ADN-based NEPE solid propellant with dual oxidizers at various pressures present a multi-flame structure, and the brightness of flame structures increase with an increase in the pressure.

参考文献
  1. Bergman, H., Edvinsson, H., and Ostmark, H., (2010) Trends and Development of New Energetic Materials, Militartek. Tidskrift, 70(2), pp. 26-30.

  2. DeLuca, L.T.,Maggi, F., Dossi, S., Weiser, V., Franzin, A., Gettwert, V., andHeintz, T., (2013)High-Energy Metal Fuels for Rocket Propulsion: Characterization and Performance, Chin. J. Explos. Propell., 36(6), pp. 1-14.

  3. Johansson, M., De Flon, J., Petterson, A., Wanhatalo, M., and Wingborg, N., (2006) Spray Prilling of ADN and Testing of ADN-Based Solid Propellants, in 3rd Int. Conf. on Green Propellants for Space Propulsion, pp. 17-20.

  4. Jones, D.E., Kwok, Q.S., Vachon, M., Badeen, C., and Ridley, W., (2005) Characterization of ADN and ADN-Based Propellants, Propell. Explos. Pyrotech., 30(2), pp. 140-147.

  5. Korobeinichev, O.P. and Paletsky, A.A., (2001) Flame Structure of ADN/HTPB Composite Propellants, Combust. Flame, 127(3), pp. 2059-2065.

  6. Korobeinichev, O.P., Paletsky, A.A., Tereschenko, A.G., and Volkov, E.N., (2002) Combustion of Ammonium Dinitramide/Polycaprolactone Propellants, Proc. Combust. Inst., 29(2), pp. 2955-2961.

  7. Kuibida, L.V., Korobeinichev, O.P., Shmakov, A.G., Volkov, E.N., and Paletsky, A.A., (2001) Mass Spectrometric Study of Combustion of GAP- and ADN-Based Propellants, Combust. Flame, 126(3), pp. 1655-1661.

  8. Kuo, K. and Acharya, R., (2012) Fundamentals of Turbulent and Multiphase Combustion, Hoboken, NJ: Wiley.

  9. Menke, K., Heintz, T., Schweikert, W., Keicher, T., and Krause, H., (2009) Formulation and Properties of ADN/GAP Propellants, Propell. Explos. Pyrotech, 34(3), pp. 218-230.

  10. Nair, U.R., Asthana, S.N., Rao, A.S., and Gandhe, B.R., (2010) Advances in High Energy Materials, Defence Sci. J., 60(2), pp. 137-151.

  11. Ostmark, H., Bemm, U., Bergman, H., and Langlet, A., (2002) N-Guanylurea-Dinitramide: A New Energetic Material with Low Sensitivity for Propellants and Explosives Applications, Thermochim. Acta, 384(1-2), pp. 253-259.

  12. Ostmark, H., Bemm, U., Langlet, A., Sanden, R., and Wingborg, N., (2000) The Properties of Ammonium Dinitramide (ADN): Part 1, Basic Properties and Spectroscopic Data, J. Energetic Mater., 18(2-3), pp. 123-138.

  13. Pang, W.Q., Fan, X.Z., Zhang, W., Xu, H.X., Wu, S.X., Liu, F.L., Xie, W.X., and Yan, N., (2013) Effect of Ammonium Dinitramide (ADN) on the Characteristics of Hydroxyl Terminated Polybutadiene (HTPB) based Composite Solid Propellant, J. Chem. Sci. Technol., 2, pp. 53-60.

  14. Pang, W.Q., Xu, H.X., Li, Y., and Shi, X.B., (2012) Characteristics of NEPE Propellant with Ammonium Dinitramide (ADN), Adv. Mater. Res., 399, pp. 279-283.

  15. Ramaswamy, A.L., (2000) Energetic-Material Combustion Experiments on Propellant Formulations Containing Prilled Ammonium Dinitramide, Combust. Explos. Shock Waves, 36(1), pp. 119-124.

  16. Sinditskii, V.P. , Egorshev, V. Y. , Levshenkov, A .I . , and Serushkin, V. V. , (2006) Combustion of Ammonium Dinitramide, PartI: Burning Behavior, J. Propuls. Power, 22(4), pp. 769-776.

  17. Talawar, M.B., Sivabalan, R., Anniyappan, M., Gore, G.M., Asthana, S.N., and Gandhe, B.R., (2007) Emerging Trends in Advanced High Energy Materials, Combust. Explos. Shock Waves, 43(1), pp. 62-72.

  18. Teipel, U., Heintz, T., and Krause, H.H., (2000) Crystallization of Spherical Ammonium Dinitramide (ADN) Particles, Propell. Explos. Pyrotech., 25(2), pp. 81-85.

  19. Trache, D., Klapotke, T.M., Maiz, L., Abd-Elghany, M., and DeLuca, L.T., (2017) Recent Advances in New Oxidizers for Solid Rocket Propulsion, Green Chem., 19(20), pp. 4711-4736.

  20. Weiser, V., Eisenreich, N., Baier, A., and Eckl, W., (1999) Burning Behaviour of ADN Formulations, Propell. Explos. Pyrotech, 24(3), pp. 163-167.

  21. Wingborg, N. and Tryman, N., (2005) ADN-Based Monopropellants for Spacecraft Propulsion, 10-IWCP Int. Space Propulsion, GraSche GSS, Bergamo, Italy, Paper No. 13.

  22. Wingborg, N., Andreasson, S., de Flon, J., Johnsson, M., Liljedahl, M., Oscarsson, C., Pettersson, A., and Wanhatalo, M., (2010) Development of ADN-Based Minimum Smoke Propellants, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Con. Exhibit, AIAA Paper No. 2010-6586, pp. 6586-6592.

  23. Xu, H.X., Liao, L.Q., Liu, Q., Li, Y., Ran, X., and Zhao, F., (2008) Properties of Prilled Ammonium Dinitramide (ADN) Coated by Polyurethane Binders, Chin. J. Energetic Mater, 16(6), pp. 525-529 (in Chinese).

  24. Zhang, L.Y., Liu, Z.R., Heng, S.Y., Han, F., and Yue, P., (2007) Interaction of ADN with Nitrate Oxidizer, J. Solid Rocket Technol., 30(6), pp. 518-520 (in Chinese).

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain