图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.v6.i6.40
pages 713-732

CHARACTERIZATION OF SOLID FUEL MASS-BURNING ENHANCEMENT UTILIZING AN X-RAY TRANSLUCENT HYBRID ROCKET MOTOR

Brian Evans
Pennsylvania State University, University Park, Pennsylvania 16802, USA
Nicholas A. Favorito
The Pennsylvania State University, University Park, PA 16802
Eric Boyer
The Pennsylvania State University, University Park, Pennsylvania 16802, USA

ABSTRACT

The addition of nano-sized energetic materials, such as aluminum and boron, has been shown to increase the mass-burning rates of solid fuels. Previous results showed that the addition of 13 wt% Silberline® aluminum flakes to HTPB-based solid fuels increased linear regression rates by as much as 60%. When similar fuel formulations were tested in a larger (∼3 times the port diameter) hybrid rocket motor the measured regression rates were nearly identical to those of pure HTPB solid fuels. SEM/EDS analysis was conducted to indicate the reason behind this phenomenon. In contrast, the addition of the same wt% of Silberline® flakes to paraffin-based solid fuels does show a significant increase (∼30%) over baseline paraffin solid fuels. The differences in particle entrainment mechanisms for these two types of fuels were attributed to the trend of burning-rate augmentation. Waterfall analyses of pressure-time signals were utilized to study the inherent low-frequency instability of hybrid rockets. Comparisons are made to a universal frequency-scaling formula proposed in the literature, showing agreement to within 25%. To understand the instantaneous mass-burning behavior, a real-time X-ray radiography system is utilized to image the solid fuel surface during combustion testing. Results for both HTPB-based and paraffin-based solid fuel formulations are described. Traditionally, average solid fuel regression rates are correlated to the average oxidizer mass flux by a power-law curve fit. However, instantaneous fuel surface burning behavior does not exhibit the power-law behavior when correlated to the instantaneous oxidizer mass flux.