图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.28 SNIP: 0.421 CiteScore™: 0.9

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2018021264
pages 367-382

SENSITIVITY OF POLYMER-BONDED EXPLOSIVES FROM MOLECULAR MODELING DATA

David Brochu
DND
Hakima Abou-Rachid
Defence Research and Development Canada−Valcartier Research Centre, Government of Canada, 2459 de la Bravoure Road, Québec, QC, Canada, G3J 1X5
Armand Soldera
Département de Chimie, Centre Québécois sur les Matériaux Fonctionnels, Faculté des Sciences, Université de Sherbrooke, Québec, Canada J1K 2R1
Josee Brisson
Département de Chimie, CERMA (Centre de Recherche sur les Matériaux Avancés) and CQMF (Centre Québécois sur les Matériaux Fonctionnels), Faculté des Sciences et de Génie, Université Laval, Québec, Canada G1V 0A6

ABSTRACT

Sensitive energetic materials are an issue for military and civilian applications. To prevent undesired explosions, sensitive energetic materials are embedded in a protective polymer, resulting in polymer-bonded explosives (PBX). The appropriate polymer will absorb part of the energy caused by stimuli such as shock, impact, friction, and heat, thus decreasing sensitivity. To investigate how an appropriate polymer absorbs energy, three PBX models were simulated using molecular dynamics. The COMPASS force field implemented in the Materials Studio software was used. Molecular dynamics simulations were performed for three RDX-based formulations in which a single polymer chain (HTPB, Estane, or EVA) was placed at the boundary surface of an RDX crystal. Simulations were carried out at high temperature (700 K) and high pressure (15 GPa). The resulting models were analyzed in terms of potential energy increase, energy distribution, and values of the different potential energy contributions for RDX/HTPB, RDX/Estane, and RDX/EVA. The polymer binders HTPB, Estane, and EVA in such PBX formulations absorbed between 24% and 31% of internal energy, respectively, thereby making less sensitive PBXs formulations than pure RDX. This percentage is proposed as an indicator key for experimentalists to determine the most efficient polymer that can be used, for a given explosive, to minimize munition sensitivity. A clear correlation is established between the calculated absorption of internal energy by polymers and experimental sensitivity values for the three formulations studied under extreme experimental conditions. This approach may be applied to other new formulations prior to testing them in laboratories.


Articles with similar content:

MOLECULAR MODELING: TOWARD A REALISTIC APPROACH TO MODEL ENERGETIC MATERIALS
International Journal of Energetic Materials and Chemical Propulsion, Vol.12, 2013, issue 4
Hakima Abou-Rachid, Jamie Neidert, Mounir Jaidann, David Brochu, Josee Brisson
SOLID SOLUTION FORMATION BETWEEN RDX AND COMMON SOLID PROPELLANT BINDERS
International Journal of Energetic Materials and Chemical Propulsion, Vol.4, 1997, issue 1-6
J. Eric Boyer, P. W. Brown
Lithium-Ion Cell's Shape Factor Implication on Cell Performance in Automotive Application
Proceedings of the 25th National and 3rd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2019), Vol.0, 2019, issue
Shailesh N. Pandya, Raja Munusamy, Deshant Sharma, Bishnu Sanghai, Rahul Borhade, Kapil Baidya
STUDIES ON CURING OF GLYCIDYL AZIDE POLYMER USING ISOCYANATE, ACRYLATE AND PROCESSING OF GAP-BORON−BASED, FUEL-RICH PROPELLANTS
International Journal of Energetic Materials and Chemical Propulsion, Vol.15, 2016, issue 3
Anu Abirami, R. V. Singh, Prashant S. Kulkarni, Mehilal, N. T. Agawane, R. R. Soman, Jagdish G. Bhujbal
CURING REACTION AND RHEOLOGICAL PROPERTIES OF THE SLURRY OF AN HTPB/CL-20-BASED COMPOSITE EXPLOSIVE
International Journal of Energetic Materials and Chemical Propulsion, Vol.14, 2015, issue 5
Hequn Li, Yanju Wei, Jing-Yu Wang, Chongwei An