图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
国际能源材料和化学驱动期刊
ESCI SJR: 0.149 SNIP: 0.16 CiteScore™: 0.29

ISSN 打印: 2150-766X
ISSN 在线: 2150-7678

国际能源材料和化学驱动期刊

DOI: 10.1615/IntJEnergeticMaterialsChemProp.2014005311
pages 37-50

TEMPERATURE SENSITIVITY OF GRANULAR PROPELLANTS USING A CONDITIONED CLOSED BOMB

Heath T. Martin
The Pennsylvania State University, University Park, Pennsylvania, USA; The National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama, USA
Baoqi Zhang
Department of Mechanical and Nuclear Engineering The Pennsylvania State University, University Park, PA 16802 USA
Kenneth K. Kuo
Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA

ABSTRACT

In this study, a temperature-conditioned closed-bomb facility was employed to determine the temperature sensitivity of granular M48 double-base propellant, as part of a larger study on the effect of initial temperature on the interior ballistics and overall performance of the U.S. Army's 120-mm mortar system. In order to determine the temperature sensitivity of the propellant over a broad range of applicable conditions, at least three test firings were performed at each of four different initial temperatures: −47, −12, 21, and 63° C. The pressure histories recorded from each of these firings were used to deduce the linear burning rate ofM48 propellant as a function of pressure. In addition to the pressure measurements, non-intrusive acoustic emission technology was utilized in the closed-bomb tests to study the effect of initial temperature on the ignition delay of this propellant. Temperature sensitivity was found to be a constant equal to 0.37%/°C with pressure and for initial temperature between −12 and 63°C. However, the deduced burning rate at −47°C is greater than that at −12°C, leading to a temperature sensitivity of −0.07%/°C for initial temperatures below −12°C. Propellant grain fracture seems an unlikely explanation for this observation because the burning rate and vivacity behavior at −47°C mirrors that at the higher temperatures. The acoustic emission records have demonstrated an Arrhenius-type relationship between ignition delay time and initial temperature, which suggests that the propellant decomposition mechanism is not changing with temperature.