图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
自动化与信息科学期刊
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN 打印: 1064-2315
ISSN 在线: 2163-9337

卷:
卷 51, 2019 卷 50, 2018 卷 49, 2017 卷 48, 2016 卷 47, 2015 卷 46, 2014 卷 45, 2013 卷 44, 2012 卷 43, 2011 卷 42, 2010 卷 41, 2009 卷 40, 2008 卷 39, 2007 卷 38, 2006 卷 37, 2005 卷 36, 2004 卷 35, 2003 卷 34, 2002 卷 33, 2001 卷 32, 2000 卷 31, 1999 卷 30, 1998 卷 29, 1997 卷 28, 1996

自动化与信息科学期刊

DOI: 10.1615/JAutomatInfScien.v40.i5.30
pages 46-51

Validation of Hyperspectral Data Classification Models

Oleg V. Semeniv
Institute of Space Research of National Academy of Sciences of Ukraine and National Space Agency of Ukraine, Kiev, Ukraine
Yuliya V. Shatokhina
Institute of Space Research of National Academy of Sciences of Ukraine and National Space Agency of Ukraine, Kiev, Ukraine
Vitaliy A. Yatsenko
Institute of Space Research of National Academy of Sciences of Ukraine and National Space Agency of Ukraine, Kyiv, Ukraine

ABSTRACT

We consider the problem of estimating and classifying the vegetation state. The method of reference vectors for classification of the plants reflection spectrum into several classes, depending on the concentration of chlorophyll available, is proposed. We describe a new approach for validation of satellite hyperspectral data on the basis of comparison with the results of the reflection of spectrum curves, obtained by a ground-based spectrometer