图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
自动化与信息科学期刊
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN 打印: 1064-2315
ISSN 在线: 2163-9337

卷:
卷 51, 2019 卷 50, 2018 卷 49, 2017 卷 48, 2016 卷 47, 2015 卷 46, 2014 卷 45, 2013 卷 44, 2012 卷 43, 2011 卷 42, 2010 卷 41, 2009 卷 40, 2008 卷 39, 2007 卷 38, 2006 卷 37, 2005 卷 36, 2004 卷 35, 2003 卷 34, 2002 卷 33, 2001 卷 32, 2000 卷 31, 1999 卷 30, 1998 卷 29, 1997 卷 28, 1996

自动化与信息科学期刊

DOI: 10.1615/JAutomatInfScien.v50.i12.20
pages 17-33

Identification and Interpretation of Power-Law Distributions by Spectral Data of Remote Sensing

Mikhail V. Artiushenko
Scientific Center for Aerospace Research of the Earth of Institute of Geological Sciences of National Academy of Sciences of Ukraine, Kiev

ABSTRACT

Methods and algorithms for hyperspectral data processing are developed. To describe the structural features of reflection spectra there is carried out the synthesis of continuous-group scale-invariant model based on power-law distribution. There are given examples of solving the problems of searching for oil and gas by reflection spectra of vegetation cover.

REFERENCES

  1. Newman M.E.J., Power laws, Pareto distributions and Zipf’s law, J. Contemporary Physics, 2005, 46, 323–351.

  2. Bak P., How nature works: the science of self-organized criticality, Copernicus, New York, 1996.

  3. Artiushenko M.V., Podgorodetskaya L.V., Fedorovskiy A.D., Fractal analysis of vegetation cover spectrograms in nature management problems, Dopovidi NAN Ukrainy, 2010, No. 8, 113–119.

  4. Artiushenko M.V., Statistical analysis of the unsmooth geophysical fields by remote sensing data, Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal “Problemy upravleniya i informatiki”, 2018, No. 3, 72–85.

  5. Artiushenko M.V., Tomchenko O.V., Podgornyak D.L., Multifractal analysis of morphological changes in structure of water objects by space images, Dopovidi NAN Ukrainy, 2017, No. 2, 41–49.

  6. Baryakhtar V.G., Gonchar V.Yu., Yanovskiy V.V., Nature of complex structure of a radionuclide pollution spot as a result of Chernobyl accident, Ukrainskiy fizicheskiy zhurnal, 1993, 38, No. 7, 967–975.

  7. Chebotarev N.G., Lie group theory [in Russian], Knizhnyi dom “LIBROKOM”, Moscow, 2011.

  8. Postnikov M.M., Lie groups and algebra [in Russian], Nauka, Moscow, 1982.

  9. Feder J., Fractals [Russian translation], Mir, Moscow, 1991.

  10. Feigenbaum M.J. , Quantitative universality for a class of nonlinear transformations, Journal of Statistical Physics, 1978, 19, 25–52.

  11. Kronover R.M., Fractals and chaos in dynamical systems. Theory foundations [in Russian], Postmarket, Moscow, 2000.

  12. Frette V., Christensen K., Maltche-Sorenssen A., Feder J., Jossang T., Meakin P., Avalanche dynamics in a pile of rice, Nature, 1995, 379, 49–52.

  13. Johnston A.C., Nava S., Recurrence raters and probability estimates for the New Madrid seismic zone, J. of Geophysical Research, 1985, 90, 6737–6753.

  14. Diodati P., Marchesoni F., Piazza S., Acoustic emission from volcanic rocks: an example of self-organized criticality, Physical Review Letters, 1991, 67, No. 17, 2239–2243.

  15. Lyalko V.I., Shportyuk Z.M., Sybirtseva O.M., Dugin S.S., Vorobiov A.I., Studying variations of indices of spectrum of wheat reflection red edge over a gas deposit, Kosmichna nauka i tekhnologiya, 2010, 16, No. 6, 5–10.