图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
自动化与信息科学期刊
SJR: 0.232 SNIP: 0.464 CiteScore™: 0.27

ISSN 打印: 1064-2315
ISSN 在线: 2163-9337

卷:
卷 51, 2019 卷 50, 2018 卷 49, 2017 卷 48, 2016 卷 47, 2015 卷 46, 2014 卷 45, 2013 卷 44, 2012 卷 43, 2011 卷 42, 2010 卷 41, 2009 卷 40, 2008 卷 39, 2007 卷 38, 2006 卷 37, 2005 卷 36, 2004 卷 35, 2003 卷 34, 2002 卷 33, 2001 卷 32, 2000 卷 31, 1999 卷 30, 1998 卷 29, 1997 卷 28, 1996

自动化与信息科学期刊

DOI: 10.1615/JAutomatInfScien.v48.i11.10
pages 1-6

On Solution of the Generalized Riccati Equations

Vladimir B. Larin
S.P. Timoshenko Institute of Mechanics of National Academy of Sciences of Ukraine, Kyiv, Ukraine

ABSTRACT

The procedures, appearing while the synthesis of the optimal control of linear time-invariant systems, are considered. The algorithms of finding the maximal solutions of the generalized Riccati equations, arising both in the problems with continuous and with discrete time, are presented. These algorithms are based on the procedures of linear matrix inequalities.

REFERENCES

  1. Rami M.A., Zhou X.Y., Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic control, IEEE Trans. Automat. Control, 2000, 45, No. 6, 1131–1142.

  2. Ivanov I.G., Accelerated LMI solvers for the maximal solution to a asset of discrete-time algebraic Riccati equations, Appl. Math. E-Notes, 2012, 12, 228–238.

  3. Ivanov I.G., Hasanov V.I., Perturbation estimates for the two kinds of algebraic Riccati equations arising in a arising in stochastic control, J. of Numer. Math. and Stochastics, 2014, 6(1), 1–20.

  4. Prach A., Tekinalp O., Bernstein D.S., Infinite-horizon linear-quadratic control by forward propagation of the differential Riccati equation, IEEE Control Systems Magaz., 2015, 78–93.

  5. Zhang L., Fan H-Y., Chu E K.-W., Wei Y., Homotopy for rational Riccati equations arising in stochastic optimal control, SIAM J. Sci. Comput., 2015, 37, No. 1, B103–B125.

  6. Boyd S., Ghaoui L.E., Feron E., Balakrishnan V., Linear matrix inequalities in system and control theory, SIAM, Philadelphia, 1994.

  7. Gahinet P., Nemirovski A., Laub A.J., Chilali M., LMI control toolbox users guide, The Math Works Inc., 1995.

  8. Lee R.C.K., Optimal estimation, identification, and control, Cambridge, MIT Press, Massachusetts, 1964.


Articles with similar content:

On Synthesis of Stabilizing Controllers Using Linear Matrix Inequalities
Journal of Automation and Information Sciences, Vol.32, 2000, issue 12
Vladimir B. Larin
Attainability Domains for Linear and Some Classes of Nonlinear Discrete Systems and Their Control
Journal of Automation and Information Sciences, Vol.42, 2010, issue 1
Alexander B. Kurzhanski, Vsevolod M. Kuntsevich
Peculiarities of the Synthesis of the Optimal Majority Function in the Pattern Recognition Problem
Journal of Automation and Information Sciences, Vol.34, 2002, issue 10
Tashbulat Z. Aralbaev
MATHEMATICAL ASPECTS OF SYNTHESIS OF MULTI-PARAMETRIC SELECTIVE SIGNALS WITH FINITE SPECTRUM
Telecommunications and Radio Engineering, Vol.69, 2010, issue 10
D. Yu. Ilyin, E. A. Sukachev
On the Pontryagin Lower Alternating Integral
Journal of Automation and Information Sciences, Vol.45, 2013, issue 2
Ikrom M. Iskanadjiev