图书馆订阅: Guest
免疫学评论综述™

每年出版 6 

ISSN 打印: 1040-8401

ISSN 在线: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

Immunotoxicity of Therapeutic Antibodies and Nanoparticles

卷 40, 册 1, 2020, pp. 53-74
DOI: 10.1615/CritRevImmunol.2020033236
Get accessGet access

摘要

Therapeutic antibodies and nanotherapeutic drugs are of great concern due to their widespread use against numerous diseases worldwide. They are frequently used for targeted therapy under the assumption that they cause fewer side effects than nontargeted drugs. Despite their specificity and particular design for therapeutic actions, they might still exhibit unintended adverse effects in the immune system. Immunotoxicity reactions are mediated by immunomodulation, including immunostimulation and immunosuppression. The present review gives an overview on the adverse immunotoxic effects induced by therapeutic antibodies as well as nanotherapeutic drugs. In this context, future methods combining more efficient drug design with better tolerability and fewer adverse effects are discussed to ensure improved safety in the engineering of therapeutic antibodies and nanotherapeutics.

参考文献
  1. Modjtahedi H, Clarke A. The immune system. In: Gabriel J, editor. The biology of cancer. Chichester, UK: John Wiley & Sons; 2007. .

  2. Delves PJ, Roitt IM. The immune system. New Engl J Med. 2000;343(1):37-49. .

  3. Gasque P, Dean YD, McGreal EP, VanBeek J, Morgan BP. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology. 2000;49(1):171-86. .

  4. Frank MM, Fries LF. The role of complement in inflammation and phagocytosis. Immunol Today. 1991;12(9):322-6. .

  5. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2, Suppl 2):S33-40. .

  6. Muller-Schoop JW, Good RA. Functional studies of Peyer's patches: evidence for their participation in intestinal immune responses. J Immunol. 1975;114(6):1757-60. .

  7. Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology. 7th ed. Philadelphia: Saunders; 2011. .

  8. Phillips TR. Canine immune system. In: Delves PJ, editor. Encyclopedia of immunology. 2nd ed. Oxford: Elsevier; 1998. p. 411-4. .

  9. Pross S, Lefkowitz D. Cell-mediated immunity. In: Enna SJ, Bylund DB, editors. xPharm: the comprehensive pharmacology reference. New York: Elsevier; 2007. p. 1-4. .

  10. Paulnock D, Springer T, Jenkins MK, Tschopp J, Steinman R. T cell-mediated cytotoxicity. In: Janeway Jr CA, Travers P, Walport M, Shlomchik MJ, editors. Immunobiology: the immune system in health and disease. New York: Garland; 2001. .

  11. Brown JG. Impact of product attributes on preclinical safety evaluation. In: Faqi AS, editor. A comprehensive guide to toxicology in preclinical drug development. Waltham, MA: Academic Press; 2013. p. 479-88. .

  12. Makinodan T, Santos GW, Quinn RP. Immunosuppressive drugs. Pharmacol Rev. 1970;22(2):189-247. .

  13. Vroman L, Adams AL, Fischer GC, Munoz PC. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood. 1980;55(1):156-9. .

  14. Jadhav SH, Sarkar SN, Ram GC, Tripathi HC. Immuno-suppressive effect of subchronic exposure to a mixture of eight heavy metals, found as groundwater contaminants in different areas of India, through drinking water in male rats. Arch Environ Contam Toxicol. 2007;53(3):450-8. .

  15. Lee I-C, Ko J-W, Park S-H, Shin N-R, Shin I-S, Moon C, Kim S-H, Yun W-K, Kim H-C, Kim J-C. Copper nanoparticles induce early fibrotic changes in the liver via TGF-p/ Smad signaling and cause immunosuppressive effects in rats. Nanotoxicology. 2018;12(6):637-51. .

  16. Jung D, Bolm-Audorff U, Faldum A, Hengstler JG, Attia DI, Janssen K, Reifenrath M, Bienfait H-G, Mayer-Popken O, Konietzko J. Immunotoxicity of co-exposures to heavy metals: in vitro studies and results rom occupational exposure to cadmium, cobalt and lead. EXCLI J. 2003;2:31-44. .

  17. Dean JH, Padarathsingh ML, Jerrells TR. Assessment of immunobiological effects induced by chemicals, drugs or food additives. I. Tier testing and screening approach. Drug Chem Toxicol. 1979;2(1-2):5-17. .

  18. Yoo BS, Jung KH, Hana SB, Kim HM. Apoptosis-mediated immunotoxicity of polychlorinated biphenyls (PCBs) murine splenocytes. Toxicol Lett. 1997;91(2):83-9. .

  19. Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, Tang W. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer. 2019;18(1):130. .

  20. Barr BB, Benton EC, McLaren K, Bunney MH, Smith IW, Blessing K, Hunter JA. Human papilloma virus infection and skin cancer in renal allograft recipients. Lancet. 1989;333(8630):124-9. .

  21. Fishman JA, Rubin RH. Infection in organ-transplant recipients. N Engl J Med. 1998;338(24):1741-51. .

  22. Giles JT, Bathon JM. Serious infections associated with anticytokine therapies in the rheumatic diseases. J Intensive Care Med. 2004;19(6):320-34. .

  23. Descotes J. Methods of evaluating immunotoxicity. Expert Opin Drug Metab Toxicol. 2006;2(2):249-59. .

  24. Descotes J, Gouraud A. Clinical immunotoxicity of therapeutic proteins. Expert Opin Drug Metab Toxicol. 2008;4(12):1537-49. .

  25. Descotes J, Vial T. Immunotoxic effects of xenobiotics in humans: a review of current evidence. Toxicol in Vitro. 1994;8(5):963-6. .

  26. Boots JM, Christiaans MH, van Hooff JP. Effect of immunosuppressive agents on long-term survival of renal transplant recipients: focus on the cardiovascular risk. Drugs. 2004;64(18):2047-73. .

  27. Nath A, Berger JR. Complications of immunosuppressive/immunomodulatory therapy in neurological diseases. Curr Treat Options Neurol. 2012;14(3):241-55. .

  28. Johansson SGO, Bieber T, Dahl R, Friedmann PS, Lanier BQ, Lockey RF, Motala C, Ortega Martell JA, Platts-Mills TAE, Ring J, Thien F, Van Cauwenberge P, Williams HC. Revised nomenclature for allergy for global use: report of the nomenclature review committee of the world allergy organization, October 2003. J Allergy Clin Immun. 2004;113(5):832-6. .

  29. Brown AF. Anaphylactic shock: mechanisms and treatment. J Accid Emerg Med. 1995;12(2):89-100. .

  30. Justiz Vaillant AA, Zito PM. Immediate hypersensitivity reactions. Treasure Island, FL: StatPearls Publishing; 2019. .

  31. de Weck AL. Delay ed-type hypersensitivity. In: Delves PJ, Roitt IM, editors. Encyclopedia of immunology. 2nd ed. San Diego, CA: Academic Press; 1998. p. 738-42. .

  32. Benacerraf B, Levine BB. Immunological specificity of delayed and immediate hypersensitivity reactions. J Exp Med. 1962;115(5):1023-36. .

  33. Mason S, Warner NL. The immunoglobulin nature of the antigen recognition site on cells mediating transplantation immunity and delayed hypersensitivity. J Immunol. 1970;104(3):762-5. .

  34. Bos JD, Kapsenberg ML. The skin immune system. Its cellular constituents and their interactions. Immunol Toay. 1986;7(7):235-40. .

  35. Luger TA. Neuromediators-a crucial component of the skin immune system. J Dermatol Sci. 2002;30(2):87-93. .

  36. Takizawa H. Bronchial epithelial cells in allergic reactions. Curr Drug Targets Inflamm Allergy. 2005;4(3):305-11. .

  37. Patterson R, Dykewicz MS, Grammer LC, Greenberger PA, Lawrence ID, Walker CL, Wong S, Zeiss CR. Classification of immediate-type, life-threatening allergic or pseudoallergic reactions. Chest. 1990;98(2):257-9. .

  38. Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology. 2005;216(2):106-21. .

  39. Marc D, Olson K. Hypersensitivity reactions and methods of detection. NeuroScience. 2009. .

  40. Weiss RB. Hypersensitivity reactions. Semin Oncol. 1992;19(5):458-77. .

  41. Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6): 2228-33. .

  42. Masters CL, Dawkins RL, Zilko PJ, Simpson JA, Leedman RJ, Lindstrom J. Penicillamine-associated myasthenia gravis, antiacetylcholine receptor and antistriational anti-bodies. Am J Med. 1977;63(5):689-94. .

  43. Gonzalez-Moreno J, Payeras-Cifre A. Hepatitis C virus infection: looking for interferon free regimens. Sci World J. 2013 Apr 9;2013:825375. .

  44. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJ. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9(4):325-38. .

  45. Fessas P, Possamai LA, Clark J, Daniels E, Gudd C, Mullish BH, Alexander JL, Pinato DJ. Immunotoxicity from checkpoint inhibitor therapy: clinical features and underlying mechanisms. Immunology. 2020 Feb;159(2):167-77. .

  46. Beck KE, Blansfield JA, Tran KQ, Feldman AL, Hughes MS, Royal RE, Kammula US, Topalian SL, Sherry RM, Kleiner D, Quezado M, Lowy I, Yellin M, Rosenberg SA, Yang JC. Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol. 2006;24:2283-9. .

  47. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL, Suri KB, Levy C, Allen T, Mavroukakis S, Lowy I, White DE, Rosenberg SA. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother. 2007;30(8):825-30. .

  48. Descotes J. Immunotoxicity of monoclonal antibodies. MAbs. 2009;1(2):104-11. .

  49. Schneider C. Monoclonal antibodies - regulatory challenges. Curr Pharm Biotechnol. 2009;9:431-8. .

  50. European Pharmacopoeia. Monoclonal antibodies for human use (anticorpora monoclonalia ad usum humanum). Monograph 2031. Strasbourg, France: European Pharmacopoeia; 2008. Available from: http://www.edqm.eu/en/ Homepage-628.html. .

  51. European Pharmacopoeia. recombinant DNA technology, products of (producta ab ADN recombinante). Monograph 0784. Strasbourg, France: European Pharmacopoeia; 2008. Available from: http://www.edqm.eu/en/Homepage-628.html. .

  52. ICH. ICH guidelines [cited 2019 Jun 12]. Available from: https://www.ich.org/page/ich-guidelines. .

  53. Shankar G, Shores E, Wagner C, Mire-Sluis A. Scientific and regulatory considerations on the immunogenicity of biologics. Trends Biotechnol. 2006;24(6):274-80. .

  54. European Medicines Agency. Immunogenicity assessment of biotechnology-derived therapeutic proteins. [cited 2019 Dec 12]. Available from: https://www.ema.europa.eu/en/immunogenicity-assessment-biotechnology-derived-therapeutic-proteins. .

  55. European Medicines Agency. Concept paper on immuno-genicity assessment of monoclonal antibodies intended for in vivo clinical use. [cited 2019 Dec 12]. Available from: https://www.ema.europa.eu/en/search/search7search_api_views_fulltext=Concept paper monoclonal. .

  56. Ehlers S. Role of tumour necrosis factor (TNF) in host defence against tuberculosis: implications for immunotherapies targeting TNF. Ann Rheum Dis. 2003;62(Suppl 2):ii37-ii42. .

  57. Jeong D-G, Seo J-H, Heo S-H, Choi Y-K, Jeong E-S. Tumor necrosis factor-alpha deficiency impairs host defense against Streptococcus pneumoniae. Lab Anim Res. 2015;31(2):78-85. .

  58. Rychly DJ, DiPiro JT. Infections associated with tumor necrosis factor-alpha antagonists. Pharmacotherapy. 2005;25(9):1181-92. .

  59. Wallis RS. Tumour necrosis factor antagonists: structure, function, and tuberculosis risks. Lancet Infect Dis. 2008;8(10):601-11. .

  60. Connor V. Anti-TNF therapies: a comprehensive analysis of adverse effects associated with immunosuppression. Rheumatol Int. 2011;31(3):327-37. .

  61. Callen JP. Complications and adverse reactions in the use of newer biologic agents. Semin Cutan Med Surg. 2007;26(1):6-14. .

  62. Weinberg JM, Buchholz R. TNF-alpha Inhibitors. Basel, Switzerland: Springer Science & Business Media; 2006. .

  63. Antoni C, Braun J. Side effects of anti-TNF therapy: current knowledge. Clin Exp Rheumatol. 2002;20(6 Suppl 28):S152-7. .

  64. Olsen NJ, Stein CM. New drugs for rheumatoid arthritis. New Engl J Med. 2004;350(21):2167-79. .

  65. Ojiro K, Naganuma M, Ebinuma H, Kunimoto H, Tada S, Ogata H, Iwao Y, Saito H, Hibi T. Reactivation of hepatitis B in a patient with Crohn's disease treated using infliximab. J Gastroenterol. 2008;43(5):397-401. .

  66. Desai SB, Furst DE. Problems encountered during anti-tumour necrosis factor therapy. Best Pract Res Cl Rheumatol. 2006;20(4):757-90. .

  67. Atzeni F, Sarzi-Puttini P. Autoantibody production in patients treated with anti-TNF-a. Expert Rev Clin Immunol. 2008;4(2):275-80. .

  68. Garcia Aparicio AM, Rey JR, Sanz AH, Alvarez JS. Successful treatment with etanercept in a patient with hepatotoxicity closely related to infliximab. Clin Rheumatol. 2007;26(5):811-3. .

  69. National Institutes of Health. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012. Infliximab. [Updated 2017 Feb 10]. .

  70. Menghini VV, Arora AS. Infliximab-associated reversible cholestatic liver disease. Mayo Clin Proc. 2001;76(1):84-6. .

  71. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, Panoskaltsis N. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018-28. .

  72. Attarwala H. TGN1412: from discovery to disaster. J Young Pharm. 2010;2(3):332-6. .

  73. Costa MF, Said NR, Zimmermann B. Drug-induced lupus due to anti-tumor necrosis factor alpha agents. Semin Arthritis Rheum. 2008;37(6):381-7. .

  74. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Siebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109-17. .

  75. Baudouin V, Crusiaux A, Haddad E, Schandene L, Goldman M, Loirat C, Abramowicz D. Anaphylactic shock caused by immunoglobulin E sensitization after retreatment with the chimeric antiinterleukin-2 receptor monoclonal antibody basiliximab. Transplantation. 2003;76(3):459-63. .

  76. Chavez-Lopez MA, Delgado-Villafana J, Gallaga A, Huerta-Yanez G. Severe anaphylactic reaction during the second infusion of infliximab in a patient with psoriatic arthritis. Allergol Immunopathol (Madr). 2005;33(5):291-2. .

  77. Stallmach A, Giese T, Schmidt C, Meuer SC, Zeuzem SS. Severe anaphylactic reaction to infliximab: successful treatment with adalimumab - report of a case. Eur J Gastroenterol Hepatol. 2004;16(6):627-30. .

  78. Pharand C, Palisaitis DA, Hamel D. Potential anaphylactic shock with abciximab readministration. Pharmacotherapy. 2002;22(3):380-3. .

  79. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA, Wolchok JD. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375-91. .

  80. Reslan Z, Bennett M, Wong E, Jacques S, Lee A. Pembrolizumab-induced auto-immune type-1 diabetes in a patient with metastatic melanoma. J Pharm Pract Res. 2018;48(3):262-4. .

  81. Phadke SD, Ghabour R, Swick BL, Swenson A, Milhem M, Zakharia Y. Pembrolizumab therapy triggering an exacerbation of preexisting autoimmune disease: a report of 2 patient cases. J Investig Med High Impact Case Rep. 2016;4(4):2324709616674316. .

  82. Atallah-Yunes SA, Kadado AJ, Soe MH. Pericardial effusion due to pembrolizumab-induced immunotoxicity: a case report and literature review. Curr Probl Cancer. 2019;43(5):504-10. .

  83. Coles AJ, Compston DA, Selmaj KW, Lake SL, Moran S, Margolin DH, Norris K, Tandon PK. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359(17):1786-801. .

  84. Dobrovolskaia MA. Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, consid-erations and strategy. J Control Release. 2015;220:571-83. .

  85. Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, Janoria KG, Gieser G, Bateman DA, Przepiorka D, Shen YL, Shord SS, Sheth CM, Banerjee A, Liu J, Goldberg KB, Farrell AT, Blumenthal GM, Pazdur R. FDA approval summary: (daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 2018;25(9):2685-90. .

  86. Aghebati-Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, Yousefi M, Aghebati-Maleki L. Nanoparticles and cancer therapy: perspectives for application of nanoparticles in the treatment of cancers. J Cell Physiol. 2020; 235(3):1962-72. .

  87. Pillai G. Nanomedicines for cancer therapy: an update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci. 2014;1(2):13. .

  88. Bawa R, Szebeni J, Webster TJ, Audette GF. Immune aspects of biopharmaceuticals and nanomedicines. 1st ed. New York: Jenny Stanford Publishing; 2019. .

  89. Kukowska-Latallo JF, Candido KA, Cao Z, Nigavekar SS, Majoros IJ, Thomas TP, Balogh LP, Khan MK, Baker JR. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res. 2005;65(12):5317-24. .

  90. Cho YW, Park SA, Han TH, Son DH, Park JS, Oh SJ, Moon DH, Cho KJ, Ahn CH, Byun Y, Kim I-S, Kwon IC, Kim SY. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications. Biomaterials. 2007;28(6):1236-47. .

  91. Vasile C. Polymeric nanomaterials in nanotherapeutics. Amsterdam: Elsevier; 2018. .

  92. Lopalco A, Denora N. Nanoformulations for drug delivery: safety, toxicity, and efficacy. In: Nicolotti O, editor. Computational toxicology: methods and protocols. New York, NY: Springer New York; 2018. p. 347-65. .

  93. Bruckman MA, Randolph LN, VanMeter A, Hern S, Shoffstall AJ, Taurog RE, Steinmetz NF. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology. 2014;449:163-73. .

  94. Umbreit TH, Francke-Carroll S, Weaver JL, Miller TJ, Goering PL, Sadrieh N, Stratmeyer ME. Tissue distribution and histopathological effects of titanium dioxide nanoparticles after intravenous or subcutaneous injection in mice. J Appl Toxicol. 2012;32(5):350-7. .

  95. Bancos S, Tyner KM, Weaver JL. Immunotoxicity testing for drug-nanoparticle conjugates: regulatory considerations. In: Dobrovolskoia MA, editor. Handbook of immunological properties of engineered nanomaterials; 2013. p. 671-85. .

  96. Crommelin D, Vlieger J. Non-biological complex drugs: the science and the regulatory landscape. Cham, Switzerland: International Springer Publishing; 2015. .

  97. Sapsford KE, Lauritsen K, Tyner KM. Current perspectives on the US FDA regulatory framework for intelligent drug-delivery systems. Ther Deliv. 2012;3(12):1383-94. .

  98. Cruz CN, Tyner KM, Velazquez L, Hyams KC, Jacobs A, Shaw AB, Jiang W, Lionberger R, Hinderling P, Kong Y, Brown PC, Ghosh T, Strasinger C, Suarez-Sharp S, Henry D, Van Uitert M, Sadrieh N, Morefield, E. CDER risk assessment exercise to evaluate potential risks from the use of nanomaterials in drug products. AAPS J. 2013;15(3):623-8. .

  99. Bancos S, Tyner KM, Weaver JL. Immunotoxicity testing for drug-nanoparticle conjugates: regulatory considerations. Handbook of immunological properties of engineered nanomaterials. Front Nanobiomed Res. 2012;1:671-85. .

  100. Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA. Nanoparticles and the immune system. Endocrinology. 2010;151(2):458-65. .

  101. Hasezaki T, Isoda K, Kondoh M, Tsutsumi Y, Yagi K. Hepatotoxicity of silica nanoparticles with a diameter of 100 nm. Pharmazie. 2011;66:698-703. .

  102. Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Part II: safety concerns. Nanomedicine. 2013;8(6):969-81. .

  103. Weiszhar Z, Czucz J, Revesz C, Rosivall L, Szebeni J, Rozsnyay Z. Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20. Eur J Pharm Sci. 2012;45(4):492-8. .

  104. Tamilvanan S, Raja NL, Sa B, Basu SK. Clinical concerns of immunogenicity produced at cellular levels by biopharmaceuticals following their parenteral administration into human body. J Drug Target. 2010;18(7):489-98. .

  105. Greish K, Thiagarajan G, Herd H, Price R, Bauer H, Hubbard D, Burckle A, Sadekar S, Yu T, Anwar A, Ray A, Ghandehari H. Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology. 2012;6(7):713-23. .

  106. Jones CF, Campbell RA, Brooks AE, Assemi S, Tadjiki S, Thiagarajan G, Mulcock C, Weyrich AS, Brooks BD, Ghandehari H, Grainger DW. Cationic PAMAM dendrimers aggressively initiate blood clot formation. ACS Nano. 2012;6(11):9900-10. .

  107. Dobrovolskaia MA, Patri AK, Simak J, Hall JB, Semberova J, De Paoli Lacerda SH, McNeil SE. Nanoparticle size and surface charge determine effects of PAMAM dendrimers on human platelets in vitro. Mol Pharm. 2012;9(3):382-93. .

  108. Martin K, Ma AD, Key NS. Molecular basis of hemostatic and thrombotic diseases. In: Coleman WB, Tsongalis GJ, editors. Molecular pathology. 2nd ed. Burlington, MA: Academic Press; 2018. p. 277-97. .

  109. Potter TM, Rodriguez JC, Neun BW, Ilinskaya AN, Cedrone E, Dobrovolskaia MA. In vitro assessment of nanoparticle effects on blood coagulation. In: McNeil SE, editor. Characterization of nanoparticles intended for drug delivery. New York, NY: Springer New York; 2018. p. 103-24. .

  110. Ilinskaya AN, Dobrovolskaia MA. Nanoparticles and the blood coagulation system. Handbook of immunological properties of engineered nanomaterials. Front Nanobiomed Res. 2016. 6; 261-302. .

  111. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M, Malinski T, Radomski MW. Nanoparticle-induced platelet aggregation and vascular thrombosis. Br J Pharmacol. 2005;146(6):882-93. .

  112. Barbui T, Falanga A. Disseminated intravascular coagulation in acute leukemia. Semin Thromb Hemost. 2001;27(6):593-604. .

  113. Higuchi T, Toyama D, Hirota Y, Isoyama K, Mori H, Niikura H, Yamada K, Omine M. Disseminated intravascular coagulation complicating acute lymphoblastic leukemia: a study of childhood and adult cases. Leuk Lymphoma. 2005;46(8):1169-76. .

  114. Levi M. Disseminated intravascular coagulation in cancer patients. Best Pract Res Clin Haematol. 2009;22(1): 129-36. .

  115. Uchiumi H, Matsushima T, Yamane A, Doki N, Irisawa H, Saitoh T, Sakura T, Jimbo T, Handa H, Tsukamoto N, Karasawa M, Miyawaki S, Murakami H, Nojima Y. Prevalence and clinical characteristics of acute myeloid leukemia associated with disseminated intravascular coagulation. Int J Hematol. 2007;86(2):137-42. .

  116. Hiller E, Saal JG, Ostendorf P, Griffiths GW. The procoagulant activity of human granulocytes, lymphocytes and monocytes stimulated by endotoxin. Klin Wochenschr. 1977;55(15):751-7. .

  117. Walsh J, Wheeler HR, Geczy CL. Modulation of tissue factor on human monocytes by cisplatin and adriamycin. Brit J Haematol. 1992;81(4):480-8. .

  118. Oh D, Jang MJ, Lee SJ, Chong SY, Kang MS, Wada H. Evaluation of modified non-overt DIC criteria on the prediction of poor outcome in patients with sepsis. Thromb Res. 2010;126(1):18-23. .

  119. Khemani RG, Bart RD, Alonzo TA, Hatzakis G, Hallam D, Newth CJ. Disseminated intravascular coagulation score is associated with mortality for children with shock. Intensive Care Med. 2009;35(2):327-33. .

  120. Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE. Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond). 2012;7(2):245-56. .

  121. Hannon G, Lysaght J, Liptrott NJ, Prina-Mello A. Immunotoxicity considerations for next generation cancer nano-medicines. Adv Sci. 2019;6(19):1900133. .

  122. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Tariq S, Attoub S, Ali BH. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Part Fibre Toxicol. 2016;13(1):22. .

  123. Kim D, Finkenstaedt-Quinn S, Hurley KR, Buchman JT, Haynes CL. On-chip evaluation of platelet adhesion and aggregation upon exposure to mesoporous silica nanoparticles. Analyst. 2014;139(5):906-13. .

  124. Oslakovic C, Cedervall T, Linse S, Dahlback B. Polystyrene nanoparticles affecting blood coagulation. Nanomedicine. 2012;8(6):981-6. .

  125. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WCW. Analysis of nanoparticle delivery to tumours. Nat Rev Mater. 2016;1:16014. .

  126. Song G, Petschauer JS, Madden AJ, Zamboni WC. Nanoparticles and the mononuclear phagocyte system: pharmacokinetics and applications for inflammatory diseases. Curr Rheumatol Rev. 2014;10(1):22-34. .

  127. Owens 3rd DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93-102. .

  128. Moghimi SM, Hunter AC. Recognition by macrophages and liver cells of opsonized phospholipid vesicles and phospholipid headgroups. Pharm Res. 2001;18(1):1-8. .

  129. Singer L, Colten HR, Wetsel RA. Complement C3 deficiency: human, animal, and experimental models. Patho-biology. 1994;62(1):14-28. .

  130. 130. Moghimi SM, Simberg D. Complement activation turnover on surfaces of nanoparticles. Nano Today. 2017;15:8-10. .

  131. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283-318. .

  132. European Medicines Agency. Data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. [cited 2019 Dec 12]. Available from: http://www.ema.europa.eu/ema/ index.jsp?curl=pages/regulation/general/general_content_001410.jsp&mid=WC0b01ac05806403e0. .

  133. European Medicines Agency. New recommendations to manage risk of allergic reactions with intravenous iron-containing medicines [cited 2019 Dec 12]. Available from: http://www.ema.europa.eu/ema/index. jsp?curl=pages/news_and_events/news/2013/06/news_detail_001833.jsp&mid=WC0b01ac058004d5c. .

  134. Shah A, Dobrovolskaia MA. Immunological effects of iron oxide nanoparticles and iron-based complex drug formulations: therapeutic benefits, toxicity, mechanistic insights, and translational considerations. Nanomedicine. 2018;14(3):977-90. .

  135. Szebeni J. Complement activation-related pseudoallergy caused by liposomes, micellar carriers of intravenous drugs, and radiocontrast agents. Crit Rev Ther Drug Carrier Syst. 2001;18(6):567-606. .

  136. Szebeni J, Fontana JL, Wassef NM, Mongan PD, Morse DS, Dobbins DE, Stahl GL, Bunger R, Alving CR. Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation. 1999;99(17):2302-9. .

  137. Fleischer CC, Payne CK. Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes. Acc Chem Res. 2014;47(8):2651-9. .

  138. Ge C, Tian J, Zhao Y, Chen C, Zhou R, Chai Z. Towards understanding of nanoparticle-protein corona. Arch Toxicol. 2015;89(4):519-39. .

  139. Sacchetti C, Motamedchaboki K, Magrini A, Palmieri G, Mattei M, Bernardini S, Rosato N, Bottini N, Bottini M. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano. 2013;7(3):1974-89. .

  140. Nguyen VH, Lee B-J. Protein corona: a new approach for nanomedicine design. Int J Nanomed. 2017;12:3137-51. .

  141. Colapicchioni V, Tilio M, Digiacomo L, Gambini V, Palchetti S, Marchini C, Pozzi D, Occhipinti S, Amici A, Caracciolo G. Personalized liposome-protein corona in the blood of breast, gastric and pancreatic cancer patients. Int J Biochem Cell Biol. 2016;75:180-7. .

  142. Hajipour MJ, Laurent S, Aghaie A, Rezaee F, Mahmoudi M. Personalized protein coronas: a "key" factor at the nanobiointerface. Biomater Sci. 2014;2(9):1210-21. .

  143. Corbo C, Molinaro R, Parodi A, Toledano Furman NE, Salvatore F, Tasciotti E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond). 2016;11(1):81-100. .

  144. Maiolo D, Del Pino P, Metrangolo P, Parak WJ, Baldelli Bombelli F. Nanomedicine delivery: does protein corona route to the target or off road? Nanomedicine (Lond). 2015;10(21):3231-47. .

  145. Caputo D, Papi M, Coppola R, Palchetti S, Digiacomo L, Caracciolo G, Pozzi D. A protein corona-enabled blood test for early cancer detection. Nanoscale. 2017; 9(1):349-54. .

  146. Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, Kelly PM, Aberg C, Mahon E, Dawson KA. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat Nanotechnol. 2013;8(2):137-43. .

  147. Varnamkhasti BS, Hosseinzadeh H, Azhdarzadeh M, Vafaei SY, Esfandyari-Manesh M, Mirzaie ZH, Amini M, Ostad SN, Atyabi F, Dinarvand R. Protein corona hampers targeting potential of MUC1 aptamer functionalized SN-38 core-shell nanoparticles. Int J Pharm. 2015;494(1):430-44. .

  148. Deng ZJ, Liang M, Monteiro M, Toth I, Minchin RF. Nanoparticle-induced unfolding of fibrinogen promotes Mac-1 receptor activation and inflammation. Nat Nanotechnol. 2011;6(1):39-44. .

  149. Gheshlaghi ZN, Riazi GH, Ahmadian S, Ghafari M, Ma- hinpour R. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin (Shanghai). 2008;40(9):777-82. .

  150. Wagner SC, Roskamp M, Pallerla M, Araghi RR, Schlecht S, Koksch B. Nanoparticle-induced folding and fibril formation of coiled-coil-based model peptides. Small. 2010;6(12):1321-8. .

  151. Colvin VL, Kulinowski KM. Nanoparticles as catalysts for protein fibrillation. Proc Natl Acad Sci U S A. 2007;104(21):8679-80. .

  152. Zaman M, Ahmad E, Qadeer A, Rabbani G, Khan RH. Nanoparticles in relation to peptide and protein aggregation. Int J Nanomed. 2014;9:899-912. .

  153. Burke KA, Yates EA, Legleiter J. Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front Neurol. 2013;4:17. .

  154. Yin H, Chen R, Casey PS, Ke PC, Davis TP, Chen C. Reducing the cytotoxicity of ZnO nanoparticles by a preformed protein corona in a supplemented cell culture medium. RSC Adv. 2015;5(90):73963-73. .

  155. Saptarshi SR, Duschl A, Lopata AL. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle. J Nanobiotechnol. 2013;11(1):26. .

  156. L'Acqua C, Hod E. New perspectives on the thrombotic complications of haemolysis. Br J Haematol. 2015;168(2):175-85. .

  157. Neun BW, Dobrovolskaia MA. Method for analysis of nanoparticle hemolytic properties in vitro. In: McNeil SE, editor. Characterization of nanoparticles intended for drug delivery. Totowa, NJ: Humana Press; 2011. p. 215-24. .

  158. Chen H-T, Neerman MF, Parrish AR, Simanek EE. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J Am Chem Soc. 2004;126(32):10044-8. .

  159. Aseichev AV, Azizova OA, Beckman EM, Skotnikova OI, Dudnik LB, Shcheglovitova ON, Sergienko VI. Effects of gold nanoparticles on erythrocyte hemolysis. Bull Exp Biol Med. 2014;156(4):495-8. .

  160. Martinez DST, Paula AJ, Fonseca LC, Luna LAV, Silveira CP, Duran N, Alves OL. Monitoring the hemolytic effect of mesoporous silica nanoparticles after human blood protein corona formation. Eur J Inorg Chem. 2015;2015(27):4595-602. .

  161. Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of toll-like receptor 4 in immune activation. Biomaterials. 2010;31(26):6867-75. .

  162. Couto D, Freitas M, Costa VM, Chiste RC, Almeida A, Lopez-Quintela MA, Rivas J, Freitas P, Silva P, Carvalho F, Fernandes E. Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory activation and liver toxicity. J Appl Toxicol. 2016;36(10):1321-31. .

  163. Durocher I, Girard D. In vivo proinflammatory activity of generations 0-3 (G0-G3) polyamidoamine (PAMAM) nanoparticles. Inflamm Res. 2016;65(9):745-55. .

  164. Blank F, Gerber P, Rothen-Rutishauser B, Sakulkhu U, Salaklang J, De Peyer K, Gehr P, Nicod LP, Hofmann H, Geiser T, Petri-Fink A, Von Garnier C. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology. 2011;5(4):606-21. .

  165. Tsai CY, Lu SL, Hu CW, Yeh CS, Lee GB, Lei HY. Size-dependent attenuation of TLR9 signaling by gold nanoparticles in macrophages. J Immunol. 2012;188(1):68-76. .

  166. Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One. 2013;8(2):e58208. .

  167. Szebeni J, Muggia F, Gabizon A, Barenholz Y. Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and pre-vention. Adv Drug Deliv Rev. 2011;63(12):1020-30. .

  168. Luo YH, Chang LW, Lin P. Metal-based nanoparticles and the immune system: activation, inflammation, and potential applications. Biomed Res Int. 2015;2015:143720. .

  169. Bonner JC. Lung fibrotic responses to particle exposure. Toxicol Pathol. 2007;35(1):148-53. .

  170. Parivar K, Malekvand Fard F, Bayat M, Alavian SM, Motavaf M. Evaluation of iron oxide nanoparticles toxicity on liver cells of BALB/c rats. Iran Red Crescent Med J. 2016;18(1):e28939. .

  171. Esmaeillou M, Moharamnejad M, Hsankhani R, Tehrani AA, Maadi H. Toxicity of ZnO nanoparticles in healthy adult mice. Environ Toxicol Pharmacol. 2013;35(1):67-71. .

  172. Brand W, Noorlander CW, Giannakou C, De Jong WH, Kooi MW, Park MV, Vandebriel RJ, Bosselaers IE, Scholl JH, Geertsma RE. Nanomedicinal products: a survey on specific toxicity and side effects. Int J Nanomed. 2017;12:6107-29. .

  173. Dobrovolskaia MA, Shurin M, Shvedova AA. Current understanding of interactions between nanoparticles and the immune system. Toxicol Appl Pharmacol. 2016;299:78-89. .

  174. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662-8. .

  175. Da Silva J, Jesus S, Bernardi N, Cola^o M, Borges O. Poly(D,L-lactic acid) nanoparticle size reduction increases its immunotoxicity. Front Bioeng Biotechnol. 2019;7:137. .

  176. Chen Y-S, Hung Y-C, Liau I, Huang GS. Assessment of the in vivo toxicity of gold nanoparticles. Nanoscale Res Lett. 2009;4(8):858-64. .

  177. Di Gioacchino M, Petrarca C, Lazzarin F, Di Giampaolo L, Sabbioni E, Boscolo P, Mariani-Costantini R, Bernardini G. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1 Suppl):65S-71S. .

  178. Dobrovolskaia MA, Neun BW, Clogston JD, Grossman JH, McNeil SE. Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond). 2014;9(12):1847-56. .

  179. Li Y, Fujita M, Boraschi D. Endotoxin contamination in nanomaterials leads to the misinterpretation of immunosafety results. Front Immunol. 2017;8:472. .

  180. Li Y, Boraschi D. Endotoxin contamination: a key element in the interpretation of nanosafety studies. Nanomedicine (Lond). 2016;11(3):269-87. .

  181. Dobrovolskaia MA, McNeil SE. Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release. 2013;172(2):456-66. .

  182. Smith MJ, McLoughlin CE, White Jr KL, Germolec DR. Evaluating the adverse effects of nanomaterials on the immune system with animal models. In: Dobrovolskoia AM, McNeil SE, editors. Handbook of immunological properties of engineered nanomaterials; 2016. p. 281-315. .

  183. Vetten MA, Yah CS, Singh T, Gulumian M. Challenges facing sterilization and depyrogenation of nanoparticles: effects on structural stability and biomedical applications. Nanomedicine. 2014;10(7):1391-9. .

  184. Subbarao N. Nanoparticle sterility and sterilization of nanomaterials. In: Dobrovolskoia AM, McNeil SE, editors. Handbook of immunological properties of engineered nanomaterials; 2016. p. 53-75. .

  185. Lieder R, Petersen PH, Sigurjonsson OE. Endotoxins-the invisible companion in biomaterials research. Tissue Eng Part B Rev. 2013;19(5):391-402. .

  186. Gorbet MB, Sefton MV. Endotoxin: the uninvited guest. Biomaterials. 2005;26(34):6811-7. .

  187. Miyamoto T, Okano S, Kasai N. Inactivation of Escherichia coli endotoxin by soft hydrothermal processing. Appl Environ Microbiol. 2009;75(15):5058-63. .

  188. Bamba T, Matsui R, Watabe K. Effect of steam-heat treatment with/without divalent cations on the inactivation of lipopolysaccharides from several bacterial species. PDA J Pharm Sci Technol. 1996;50(2):129-35. .

  189. Sandle T. A comparative study of different methods for endotoxin destruction. Am Pharm Rev. 2013;Nov(Suppl 6):15-17. .

  190. Ashwood P, Thompson RP, Powell JJ. Fine particles that adsorb lipopolysaccharide via bridging calcium cations may mimic bacterial pathogenicity towards cells. Exp Biol Med (Maywood). 2007;232(1):107-17. .

  191. Li Y, Italiani P, Casals E, Valkenborg D, Mertens I, Baggerman G, Nelissen I, Puntes VF, Boraschi D. Assessing the immunosafety of engineered nanoparticles with a novel in vitro model based on human primary monocytes. ACS Appl Mater Interf. 2016;8(42):28437-47. .

  192. Boomer JS, To K, Chang KC, Takasu O, Osborne DF, Walton AH, Bricker TL, Jarman SD, Kreisel D, Krupnick AS, Srivastava A, Swanson PE, Green JM, Hotchkiss RS. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA. 2011;306(23):2594-605. .

  193. van der Poll T, van de Veerdonk FL, Scicluna BP, Netea MG. The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 2017;17(7):407-20. .

  194. Shi Y, Yadav S, Wang F, Wang H. Endotoxin promotes adverse effects of amorphous silica nanoparticles on lung epithelial cells in vitro. J Toxicol Environ Health A. 2010;73(11):748-56. .

  195. Inoue K, Takano H, Yanagisawa R, Hirano S, Kobayashi T, Fujitani Y, Shimada A, Yoshikawa T. Effects of inhaled nanoparticles on acute lung injury induced by lipopolysaccharide in mice. Toxicology. 2007;238(2-3):99-110. .

  196. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, Clogston JD, McNeil SE. Common pitfalls in nanotechnology: lessons learned from NCI's nanotechnology characterization laboratory. Integr Biol (Camb). 2013;5(1):66-73. .

  197. Neun BW, Dobrovolskaia MA. Understanding endotoxin and P-glucan contamination in nanotechnology-based drug products. In: Williams KL, editor. Endotoxin detection and control in pharma, limulus, and mammalian systems. Cham, Switzerland: Springer; 2019. p. 481-96. .

  198. Ungerstedt JS, Soop A, Sollevi A, Blomback M. Bedside monitoring of coagulation activation after challenging healthy volunteers with intravenous endotoxin. Thromb Res. 2003;111(6):329-34. .

  199. Copeland S, Warren HS, Lowry SF, Calvano SE, Remick D. Acute inflammatory response to endotoxin in mice and humans. Clin Diagn Lab Immunol. 2005; 12(1):60-7. .

  200. Chanda N, Kan P, Watkinson LD, Shukla R, Zambre A, Carmack TL, Engelbrecht H, Lever JR, Katti K, Fent GM, Casteel SW, Smith CJ, Miller WH, Jurisson S, Boote E, Robertson JD, Cutler C, Dobrovolskaia M, Kannan R, Katti KV. Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nano-construct in prostate tumor-bearing mice. Nanomedicine. 2010;6(2):201-9. .

  201. Brauckmann S, Effenberger-Neidnicht K, de Groot H, Nagel M, Mayer C, Peters J, Hartmann M. Lipopolysaccharide-induced hemolysis: evidence for direct membrane interactions. Sci Rep. 2016;6:35508. .

  202. Dobrovolskaia MA, Neun BW, Clogston JD, Ding H, Ljubimova J, McNeil SE. Ambiguities in applying traditional Limulus amebocyte lysate tests to quantify endotoxin in nanoparticle formulations. Nanomedicine (Lond). 2010;5(4):555-62. .

  203. Li Y, Italiani P, Casals E, Tran N, Puntes VF, Boraschi D. Optimising the use of commercial LAL assays for the analysis of endotoxin contamination in metal colloids and metal oxide nanoparticles. Nanotoxicology. 2015;9(4):462-73. .

  204. Dobrovolskaia MA, McNeil SE. Handbook of immunological properties of engineered nanomaterials. Singapore: World Scientific; 2013. .

  205. Jin Y, Jia J, Li C, Xue J, Sun J, Wang K, Gan Y, Xu J, Shi Y, Liang X. LAL test and RPT for endotoxin detection of CPT-11/DSPE-mPEG2000 nanoformulation: what if traditional methods are not applicable? Asian J Pharm Sci. 2018;13(3):289-96. .

  206. Dobrovolskaia MA, Germolec DR, Weaver JL. Evaluation of nanoparticle immunotoxicity. Nat Nanotechnol. 2009;4(7):411-4. .

  207. Guidance for Industry. Pyrogen and endotoxins testing: questions and answers [cited 2019 Dec 12]. Available from: http://academy.gmp-compliance.org/guidemgr/files/ UCM310098.PDF. .

  208. Guidance for Industry. Pyrogen and endotoxins testing: questions and answers [cited 2019 Dec 12]. Available from: https://www.fda.gov/regulatory-information/ search-fda-guidance-documents/guidance-industry-pyrogen-and-endotoxins-testing-questions-and-answers. .

  209. ISO/TS 10993-20:2006. Biological evaluation of medical devices - Part 20: principles and methods for immunotoxicology testing of medical devices [cited 2019 Dec 12]. Available from: https://www.iso.org/standard/35979.html. .

  210. National Cancer Institute, Division of Cancer Treatment & Diagnosis [cited 2019 Dec 12]. Available from: https://ncl.cancer.gov/. .

  211. European Nanomedicine Characterisation Laboratory [cited 2019 Dec 12]. Available from: http://www.euncl.eu/. .

  212. Godara A, Raabe D, Green S. The influence of sterilization processes on the micromechanical properties of carbon fiber-reinforced PEEK composites for bone implant applications. Acta Biomater. 2007;3(2):209-20. .

  213. Masson V, Maurin F, Fessi H, Devissaguet JP. Influence of sterilization processes on poly(epsilon-caprolactone) nanospheres. Biomaterials. 1997;18(4):327-35. .

  214. Franja A, Pelaz B, Moros M, Sanchez-Espinel C, Hernandez A, Fernandez-Lopez C, Grazu V, de la Fuente JM, Pastoriza-Santos I, Liz-Marzan LM, Gonzalez-Fernandez A. Sterilization matters: consequences of different sterilization techniques on gold nanoparticles. Small. 2010;6(1):89-95. .

  215. Presta LG. Molecular engineering and design of therapeutic antibodies. Curr Opin Immunol. 2008;20(4):460-70. .

  216. Hale G. Therapeutic antibodies - delivering the promise? Adv Drug Deliv Rev. 2006;58(5-6):633-9. .

  217. Reichert JM, Rosensweig CJ, Faden LB, Dewitz MC. Monoclonal antibody successes in the clinic. Nat Biotechnol. 2005;23(9):1073-8. .

  218. Hassan MS, Abedi-Valugerdi M, Lefranc G, Hammar-strom L, Smith CI. Biological half-life of normal and truncated human IgG3 in scid mice. Eur J Immunol. 1991;21(5):1319-22. .

  219. Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci. 2009;30(7):356-62. .

  220. Dusinska M, Tulinska J, El Yamani N, Kuricova M, Liskova A, Rollerova E, Runden-Pran E, Smolkova B. Immunotoxicity, genotoxicity and epigenetic toxicity of nanomaterials: new strategies for toxicity testing? Food Chem Toxicol. 2017;109(Pt 1):797-811. .

  221. Smolkova B, El Yamani N, Collins A, Gutleb A, Dusinska M. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food Chem Toxicol. 2015;77:64-73. .

  222. Shyamasundar S, Ng CT, Lanry Yung LY, Dheen ST, Bay BH. Epigenetic mechanisms in nanomaterial-induced toxicity. Epigenomics. 2015;7(3):395-411. .

  223. Lu X, Miousse IR, Pirela SV, Moore JK, Melnyk S, Koturbash I, Demokritou P. In vivo epigenetic effects induced by engineered nanomaterials: a case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology. 2016;10(5):629-39. .

  224. Marczylo EL, Jacobs MN, Gant TW. Environmentally induced epigenetic toxicity: potential public health concerns. Crit Rev Toxicol. 2016;46(8):676-700. .

  225. Qian Y, Zhang J, Hu Q, Xu M, Chen Y, Hu G, Zhao M, Liu S. Silver nanoparticle-induced hemoglobin decrease involves alteration of histone 3 methylation status. Biomaterials. 2015;70:12-22. .

  226. Sule N, Singh R, Srivastava DK. Alternative modes of binding of recombinant human histone deacetylase 8 to colloidal gold nanoparticles. J Biomed Nanotechnol. 2008;4(4):463-8. .

对本文的引用
  1. Houen Gunnar, Therapeutic Antibodies: An Overview, in Therapeutic Antibodies, 2313, 2022. Crossref

将发表的论文

Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain