图书馆订阅: Guest
免疫学评论综述™

每年出版 6 

ISSN 打印: 1040-8401

ISSN 在线: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

T Cell Receptors for Gene Transfer in Adoptive T Cell Therapy

卷 39, 册 2, 2019, pp. 105-122
DOI: 10.1615/CritRevImmunol.2019030788
Get accessGet access

摘要

The past decade has seen enormous progress in cancer immunotherapy. Checkpoint inhibitors are a class of immunotherapy that act to recruit endogenous T cells of a patient's immune system against cancer-associated peptide- MHC antigens. In this process, mutated antigenic peptides referred to as neoantigens often serve as the target on cancer cells that are recognized by the T cell receptor (TCR) on endogenous T cells. Another successful immunotherapy has involved adoptive T cell therapy, where therapeutic doses of T cells expressing a gene for an anti-cancer receptor are delivered to a patient. This approach has been used primarily against hematopoietic cancers using synthetic receptors called chimeric antigen receptors (CARs). CARs typically contain an antibody fragment (single-chain Fv, scFv) against a cancer cell surface antigen such as the B cell molecule CD19. While therapeutic CARs (and full antibodies) target antigens expressed on cell surfaces, TCRs can target a much larger array of intracellular proteins by binding to any cellular peptide associated with an MHC product. These cancer targets include self-peptides from aberrantly expressed/overexpressed proteins or neoantigens. In this review, we discuss the use of TCRs in adoptive T cell therapy and their target antigens. We focus on two properties that impact sensitivity, potency, and possible toxic cross-reactivity of TCR-mediated therapy: (1) the affinity of the TCR for the target antigen, and (2) the density of the target antigen. Finally, we provide a comprehensive listing of the current clinical trials that involve TCRs in adoptive T cell cancer therapy.

参考文献
  1. Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A. 1993;90(2):720-4.

  2. June CH, Riddell SR, Schumacher TN. Adoptive cellular therapy: a race to the finish line. Sci Transl Med. 2015 Mar 25;7(280):280-7.

  3. Sadelain M. Chimeric antigen receptors: driving immunology towards synthetic biology. Curr Opin Immunol. 2016 Jun 30;41:68-76.

  4. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015 Apr 3;348(6230):56-61.

  5. Ribas A, Wolchok JD. Cancer immunotherapy using check-point blockade. Science. 2018 Mar 23;359(6382):1350-5.

  6. Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nature Rev Immunol. 2012 Apr;12(4):269-81.

  7. Stroncek DF, Berger C, Cheever MA, Childs RW, Dudley ME, Flynn P, Gattinoni L, Heath JR, Kalos M, Marincola FM, Miller JS, Mostoslavsky G, Powell DJ Jr., Rao M, Restifo NP, Rosenberg SA, O'Shea J, Melief CJ. New directions in cellular therapy of cancer: a summary of the summit on cellular therapy for cancer. J Trans Med. 2012 Mar 15;10(1):48.

  8. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419-66.

  9. Schietinger A, Greenberg PD. Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol. 2014 Feb;35(2):51-60.

  10. Vigneron N, Stroobant V, Van den Eynde BJ, van der Bruggen P. Database of T cell-defined human tumor antigens: the 2013 update. Cancer Immunity. 2013;13:15.

  11. Stromnes IM, Schmitt TM, Chapuis AG, Hingorani SR, Greenberg PD. Re-adapting T cells for cancer therapy: from mouse models to clinical trials. Immunol Rev. 2014 Jan;257(1):145-64.

  12. Schreiber H, Greenberg P. Editorial overview: tumour immunology. Curr Opin Immunol. 2015 Apr;33:ix-xi.

  13. Tran E, Robbins PF, Rosenberg SA. "Final common pathway" of human cancer immunotherapy: targeting random somatic mutations. Nature Immunol. 2017 Feb 15;18(3):255-62.

  14. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, Mellman I, Prindiville SA, Viner JL, Weiner LM, Matrisian LM. The prioritization of cancer antigens: a National Cancer Institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009 Sep 1;15(17):5323-37.

  15. Garber K. Driving T-cell immunotherapy to solid tumors. Nature Biotechnol. 2018 Mar 6;36(3):215-9.

  16. Blaha DT, Anderson SD, Yoakum DM, Hager MV, Zha Y, Gajewski TF, Kranz DM. High-throughput stability screening of neoantigen/HLA complexes improves immunogenicity predictions. Cancer Immunol Res. 2019 Jan;7(1):50-61.

  17. Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M, Yang X, Carrera DA, Downey KM, Shrivastav S, Liu S, Lin Y, Lagisetti C, Chuntova P, Watchmaker PB, Mueller S, Pollack IF, Rajalingam R, Carcaboso AM, Mann M, Sette A, Garcia KC, Hou Y, Okada H. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2018 Jan 2;215(1):141-57.

  18. Klebanoff CA, Wolchok JD. Shared cancer neoantigens: making private matters public. J Exp Med. 2018 Jan 2;215(1):5-7.

  19. van der Lee DI, Reijmers RM, Honders MW, Hagedoorn RS, de Jong RC, Kester MG, van der Steen DM, de Ru AH, Kweekel C, Bijen HM, Jedema I, Veelken H, van Veelen PA, Heemskerk MH, Falkenburg JHF, Griffioen M. Mutated nucleophosmin 1 as immunotherapy target in acute myeloid leukemia. J Clin Invest. 2019 Feb 1;129(2):774-85.

  20. Lo W, Parkhurst M, Robbins PF, Tran E, Lu YC, Jia L, Gartner JJ, Pasetto A, Deniger D, Malekzadeh P, Shelton TE, Prickett T, Ray S, Kivitz S, Paria BC, Kriley I, Schrump DS, Rosenberg SA. Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol Res. 2019 Apr;7(4):534-43.

  21. Blankenstein T, Leisegang M, Uckert W, Schreiber H. Targeting cancer-specific mutations by T cell receptor gene therapy. Curr Opin Immunol. 2015 Apr;33:112-9.

  22. Stronen E, Toebes M, Kelderman S, van Buuren MM, Yang W, van Rooij N, Donia M, Boschen ML, Lund-Johansen F, Olweus J, Schumacher TN. Targeting of cancer neo- antigens with donor-derived T cell receptor repertoires. Science. 2016 Jun 10;352(6291):1337-41.

  23. Smith SN, Wang Y, Baylon JL, Singh NK, Baker BM, Tajkhorshid E, Kranz DM. Changing the peptide specificity of a human T-cell receptor by directed evolution. Nature Commun. 2014;5:5223.

  24. Matsuda T, Leisegang M, Park JH, Ren L, Kato T, Ikeda Y, Harada M, Kiyotani K, Lengyel E, Fleming GF, Nakamura Y. Induction of neoantigen-specific cytotoxic T cells and construction of T-cell receptor-engineered T cells for ovarian cancer. Clin Cancer Res. 2018 Nov 1;24(21):5357-67.

  25. Riley TP, Hellman LM, Gee MH, Mendoza JL, Alonso JA, Foley KC, Nishimura MI, Vander Kooi CW, Garcia KC, Baker BM. T cell receptor cross-reactivity expanded by dramatic peptide-MHC adaptability. Nat Chem Biol. 2018 Oct;14(10):934-42.

  26. Cook JR, Wormstall E-M, Hornell T, Russell J, Connolly JM, Hansen TH. Quantitation of the cell surface level of Ld resulting in positive versus negative selection of the 2C transgenic T cell receptor in vivo. Immunity. 1997;7:233-41.

  27. Delaney JR, Sykulev Y, Eisen HN, Tonegawa S. Differences in the level of expression of class I major histocompatibility complex proteins on thymic epithelial and dendritic cells influence the decision of immature thymocytes between positive and negative selection. Proc Natl Acad Sci U S A. 1998;95(9):5235-40.

  28. Bouneaud C, Kourilsky P, Bousso P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity. 2000 Dec;13(6):829-40.

  29. Bullock TN, Colella TA, Engelhard VH. The density of peptides displayed by dendritic cells affects immune responses to human tyrosinase and gp100 in HLA-A2 transgenic mice. J Immunol. 2000 Mar 1;164(5):2354-61.

  30. Sykulev Y, Joo M, Vturina I, Tsomides TJ, Eisen HN. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity. 1996;4:565-71.

  31. Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM. Direct observation of ligand recognition by T cells. Nature. 2002 Oct 24;419(6909):845-9.

  32. Li QJ, Dinner AR, Qi S, Irvine DJ, Huppa JB, Davis MM, Chakraborty AK. CD4 enhances T cell sensitivity to antigen by coordinating Lck accumulation at the immunological synapse. Nature Immunol. 2004 Aug;5(8):791-9.

  33. Huang J, Brameshuber M, Zeng X, Xie J, Li QJ, Chien YH, Valitutti S, Davis MM. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity. 2013 Nov 14;39(5):846-57.

  34. Holler PD, Kranz DM. Quantitative analysis of the contribution of TCR/pepMHC affinity and CD8 to T cell activation. Immunity. 2003;18:255-64.

  35. Blum JS, Wearsch PA, Cresswell P. Pathways of antigen processing. Annu Rev Immunol. 2013 Mar 21;31:443-73.

  36. Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Institute. 2013 Aug 21;105(16):1172-87.

  37. Reeves E, James E. Antigen processing and immune regulation in the response to tumours. Immunology. 2017 Jan;150(1):16-24.

  38. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics. 1999 Nov;50(3-4): 213-9.

  39. Sharma P, Kranz DM. Recent advances in T-cell engineering for use in immunotherapy. F1000 Res. 2016;5. DOI: 10.12688/f1000research.9073.1.

  40. Engels B, Engelhard VH, Sidney J, Sette A, Binder DC, Liu RB, Kranz DM, Meredith SC, Rowley DA, Schreiber H. Relapse or eradication of cancer is predicted by peptide-major histocompatibility complex affinity. Cancer Cell. 2013 Apr 15;23(4):516-26.

  41. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017 Jul 13;547(7662):217-21.

  42. Ghorani E, Rosenthal R, McGranahan N, Reading JL, Lynch M, Peggs KS, Swanton C, Quezada SA. Differential binding affinity of mutated peptides for MHC class I is a predictor of survival in advanced lung cancer and melanoma. Ann Oncol. 2018 Jan 1;29(1):271-9.

  43. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, Kammula US, Royal RE, Sherry RM, Wunderlich JR, Lee CC, Restifo NP, Schwarz SL, Cogdill AP, Bishop RJ, Kim H, Brewer CC, Rudy SF, VanWaes C, Davis JL, Mathur A, Ripley RT, Nathan DA, Laurencot CM, Rosenberg SA. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009 Jul 16;114(3):535-46.

  44. Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DA, Feldman SA, Davis JL, Morgan RA, Merino MJ, Sherry RM, Hughes MS, Kammula US, Phan GQ, Lim RM, Wank SA, Restifo NP, Robbins PF, Laurencot CM, Rosenberg SA. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. Mar;19(3):620-6.

  45. Harris DT, Hager MV, Smith SN, Cai Q, Stone JD, Kruger P, Lever M, Dushek O, Schmitt TM, Greenberg PD, Kranz DM. Comparison of T cell activities mediated by human TCRs and CARs that use the same recognition domains. J Immunol. 2018 Feb 1;200(3):1088-100.

  46. Krogsgaard M, Davis MM. How T cells "see" antigen. Nature Immunol. 2005 Mar;6(3):239-45.

  47. Artyomov MN, Lis M, Devadas S, Davis MM, Chakraborty AK. CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery. Proc Natl Acad Sci U S A. 2010 Sep 28;107(39):16916-21.

  48. Aleksic M, Liddy N, Molloy PE, Pumphrey N, Vuidepot A, Chang KM, Jakobsen BK. Different affinity windows for virus and cancer-specific T-cell receptors: implications for therapeutic strategies. Eur J Immunol. 2012 Dec;42(12):3174-9.

  49. Richman SA, Kranz DM. Display, engineering, and applications of antigen-specific T cell receptors. Biomol Eng. 2007 Mar 12;24:361-73.

  50. Zhao Y, Bennett AD, Zheng Z, Wang QJ, Robbins PF, Yu LY, Li Y, Molloy PE, Dunn SM, Jakobsen BK, Rosenberg SA, Morgan RA. High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J Immunol. 2007 Nov 1;179(9):5845-54.

  51. Stone JD, Chervin AS, Kranz DM. T-cell receptor binding affinities and kinetics: impact on T-cell activity and specificity. Immunology. 2009 Feb;126(2):165-76.

  52. Engels B, Chervin AS, Sant AJ, Kranz DM, Schreiber H. Long-term persistence of CD4(+) but rapid disappearance of CD8(+) T cells expressing an MHC class I-restricted TCR of nanomolar affinity. Mol Ther. 2012 Mar;20(3):652-60.

  53. Soto CM, Stone JD, Chervin AS, Engels B, Schreiber H, Roy EJ, Kranz DM. MHC-class I-restricted CD4 T cells: a nanomolar affinity TCR has improved antitumor efficacy in vivo compared to the micromolar wild-type TCR. Cancer Immunol Immunother. 2013 Aug 25;62(2):359-69.

  54. Holler PD, Chlewicki LK, Kranz DM. TCRs with high affinity for foreign pMHC show self-reactivity. Nature Immunol. 2003 Jan;4(1):55-62.

  55. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA. Cancer regression and neurological toxicity following Anti-MAGE-A3 TCR gene therapy. J Immunother. 2013 Feb;36(2):133-51.

  56. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, Litzky L, Bagg A, Carreno BM, Cimino PJ, Binder-Scholl GK, Smethurst DP, Gerry AB, Pumphrey NJ, Bennett AD, Brewer JE, Dukes J, Harper J, Tayton-Martin HK, Jakobsen BK, Hassan NJ, Kalos M, June CH. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013 Aug 8;122(6):863-71.

  57. Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC, Grand F, Brewer JE, Gupta M, Plesa G, Bossi G, Vuidepot A, Powlesland AS, Legg A, Adams KJ, Bennett AD, Pumphrey NJ, Williams DD, Binder-Scholl G, Kulikovskaya I, Levine BL, Riley JL, Varela-Rohena A, Stadtmauer EA, Rapoport AP, Linette GP, June CH, Hassan NJ, Kalos M, Jakobsen BK. Identification of a titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013 Aug 7;5(197):197ra03.

  58. Stone JD, Kranz DM. Role of T cell receptor affinity in the efficacy and specificity of adoptive T cell therapies. Front Immunol. 2013;4:244.

  59. Stone JD, Harris DT, Kranz DM. TCR affinity for p/ MHC formed by tumor antigens that are self-proteins: impact on efficacy and toxicity. Curr Opin Immunol. 2015 Apr;33:16-22.

  60. Schumacher TN, Schreiber RD. Neoantigens in cancer im-munotherapy. Science. 2015 Apr 3;348(6230):69-74.

  61. Leisegang M, Engels B, Schreiber K, Yew PY, Kiyotani K, Idel C, Arina A, Duraiswamy J, Weichselbaum RR, Uckert W, Nakamura Y, Schreiber H. Eradication of large solid tumors by gene therapy with a T-cell receptor targeting a single cancer-specific point mutation. Clin Cancer Res. 2016 Jun 1;22(11):2734-43.

  62. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006 Oct 6;314(5796):126-9.

  63. Borbulevych OY, Santhanagopolan SM, Hossain M, Baker BM. TCRs used in cancer gene therapy cross-react with MART-1/Melan-A tumor antigens via distinct mechanisms. J Immunol. 2011 Sep 1;187(5):2453-63.

  64. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME, Wunderlich JR, Nahvi AV, Helman LJ, Mackall CL, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Levy CL, Li YF, El-Gamil M, Schwarz SL, Laurencot C, Rosenberg SA. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011 Mar 1;29(7):917-24.

  65. Robbins PF, Kassim SH, Tran TL, Crystal JS, Morgan RA, Feldman SA, Yang JC, Dudley ME, Wunderlich JR, Sherry RM, Kammula US, Hughes MS, Restifo NP, Raffeld M, Lee CC, Li YF, El-Gamil M, Rosenberg SA. A pilot trial using lymphocytes genetically engineered with an NY-ESO-1-reactive T-cell receptor: long-term follow-up and correlates with response. Clin Cancer Res. 2015 Mar 1;21(5):1019-27.

  66. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, Goloubeva O, Vogl DT, Lacey SF, Badros AZ, Garfall A, Weiss B, Finklestein J, Kulikovskaya I, Sinha SK, Kronsberg S, Gupta M, Bond S, Melchiori L, Brewer JE, Bennett AD, Gerry AB, Pumphrey NJ, Williams D, Tayton-Martin HK, Ribeiro L, Holdich T, Yanovich S, Hardy N, Yared J, Kerr N, Philip S, Westphal S, Siegel DL, Levine BL, Jakobsen BK, Kalos M, June CH. NY- ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015 Aug;21(8):914-21.

  67. Hickman ES, Lomax ME, Jakobsen BK. Antigen selection for enhanced affinity T-cell receptor-based cancer therapies. J Biomol Screening. 2016 Sep;21(8):769-85.

  68. Kuball J, Dossett ML, Wolfl M, Ho WY, Voss RH, Fowler C, Greenberg PD. Facilitating matched pairing and expression of TCR chains introduced into human T cells. Blood. 2007 Mar 15;109(6):2331-8.

  69. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 2006 Sep 1;66(17):8878-86.

  70. Legut M, Dolton G, Mian AA, Ottmann OG, Sewell AK. CRISPR-mediated TCR replacement generates superior anticancer transgenic T cells. Blood. 2018 Jan 18;131(3):311-22.

  71. Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J, Li PJ, Hiatt J, Saco J, Krystofinski P, Li H, Tobin V, Nguyen DN, Lee MR, Putnam AL, Ferris AL, Chen JW, Schickel JN, Pellerin L, Carmody D, Alkorta-Aranburu G, Del Gaudio D, Matsumoto H, Morell M, Mao Y, Cho M, Quadros RM, Gurumurthy CB, Smith B, Haugwitz M, Hughes SH, Weissman JS, Schumann K, Esensten JH, May AP, Ashworth A, Kupfer GM, Greeley SAW, Bacchetta R, Meffre E, Roncarolo MG, Romberg N, Herold KC, Ribas A, Leonetti MD, Marson A. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature. 2018 Jul;559(7714):405-9.

  72. Schietinger A, Philip M, Krisnawan VE, Chiu EY, Delrow JJ, Basom RS, Lauer P, Brockstedt DG, Knoblaugh SE, Hammerling GJ, Schell TD, Garbi N, Greenberg PD. Tumor-specific T cell dysfunction is a dynamic antigen-driven differentiation program initiated early during tumorigenesis. Immunity. 2016 Aug 16;45(2):389-401.

  73. Kondo T, Imura Y, Chikuma S, Hibino S, Omata-Mise S, Ando M, Akanuma T, Iizuka M, Sakai R, Morita R, Yoshimura A. Generation and application of human induced-stem cell memory T cells for adoptive immunotherapy. Cancer Sci. 2018 Jul;109(7):2130-40.

  74. Cohen CJ, Zheng Z, Bray R, Zhao Y, Sherman LA, Rosenberg SA, Morgan RA. Recognition of fresh human tumor by human peripheral blood lymphocytes transduced with a bicistronic retroviral vector encoding a murine anti-p53 TCR. J Immunol. 2005 Nov 1;175(9):5799-808.

  75. Davis JL, Theoret MR, Zheng Z, Lamers CH, Rosenberg SA, Morgan RA. Development of human antimurine T-cell receptor antibodies in both responding and nonre-sponding patients enrolled in TCR gene therapy trials. Clin Cancer Res. 2010 Dec 1;16(23):5852-61.

  76. Chodon T, Comin-Anduix B, Chmielowski B, Koya RC, Wu Z, Auerbach M, Ng C, Avramis E, Seja E, Villanueva A, McCannel TA, Ishiyama A, Czernin J, Radu CG, Wang X, Gjertson DW, Cochran A J, Cornetta K, Wong DJ, Kaplan-Lefko P, Hamid O, Samlowski W, Cohen PA, Daniels GA, Mukherji B, Yang L, Zack JA, Kohn DB, Heath JR, Glaspy JA, Witte ON, Baltimore D, Economou JS, Ribas A. Adoptive transfer of MART-1 T-cell receptor transgenic lymphocytes and dendritic cell vaccination in patients with metastatic melanoma. Clin Cancer Res. 2014 May 1;20(9):2457-65.

  77. Ma C, Cheung AF, Chodon T, Koya RC, Wu Z, Ng C, Avramis E, Cochran AJ, Witte ON, Baltimore D, Chmielowski B, Economou JS, Comin-Anduix B, Ribas A, Heath JR. Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immuno-therapy. Cancer Discov. 2013 Apr;3(4):418-29.

  78. Dietrich PY, Le Gal FA, Dutoit V, Pittet MJ, Trautman L, Zippelius A, Cognet I, Widmer V, Walker PR, Michielin O, Guillaume P, Connerotte T, Jotereau F, Coulie PG, Romero P, Cerottini JC, Bonneville M, Valmori D. Prevalent role of TCR alpha-chain in the selection of the preimmune repertoire specific for a human tumor-associated self-antigen. J Immunol. 2003 May 15;170(10):5103-9.

  79. Rohaan MW, Berg Jvd, Gomez-Eerland R, Zon Mv, Boer Rd, Bakker EAM, Pronk LM, Wiel BVD, Nuijen B, Foppen MG, Thienen JVV, Blank CU, Haanen JBAG. Multicenter phase I/IIa study using T cell receptor gene therapy in metastatic melanoma. J Clin Oncol. 2018;36(15_Suppl):TPS9602-TPS.

  80. Robbins PF, Li YF, El-Gamil M, Zhao Y, Wargo JA, Zheng Z, Xu H, Morgan RA, Feldman SA, Johnson LA, Bennett AD, Dunn SM, Mahon TM, Jakobsen BK, Rosenberg SA. Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J Immunol. 2008 May 1;180(9):6116-31.

  81. Tan MP, Gerry AB, Brewer JE, Melchiori L, Bridgeman JS, Bennett AD, Pumphrey NJ, Jakobsen BK, Price DA, Ladell K, Sewell AK. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exper Immunol. 2015 May;180(2):255-70.

  82. Mackall C, Tap WD, Glod J, Druta M, Chow WA, Araujo DM, Grupp SA, Tine BAV, Chagin K, Winkle EV, Kari G, Trivedi T, Norry E, Holdich T, Bartlett-Pandite AN, Amado RG, D'Angelo SP. Open label, non-randomized, multi-cohort pilot study of genetically engineered NY-ESO-1 specific NY-ESO-1c259t in HLA-A2+ patients with synovial sarcoma (NCT01343043). J Clin Oncol. 2017;35(15_suppl):3000.

  83. D'Angelo SP, Melchiori L, Merchant MS, Bernstein D, Glod J, Kaplan R, Grupp S, Tap WD, Chagin K, Binder GK, Basu S, Lowther DE, Wang R, Bath N, Tipping A, Betts G, Ramachandran I, Navenot JM, Zhang H, Wells DK, Van Winkle E, Kari G, Trivedi T, Holdich T, Pandite L, Amado R, Mackall CL. Antitumor activity associated with prolonged persistence of adoptively transferred NY-ESO-1 (c259) T cells in synovial sarcoma. Cancer Discov. 2018 Aug;8(8):944-57.

  84. Rosati SF, Parkhurst MR, Hong Y, Zheng Z, Feldman SA, Rao M, Abate-Daga D, Beard RE, Xu H, Black MA, Robbins PF, Schrump DA, Rosenberg SA, Morgan RA. A novel murine T-cell receptor targeting NY-ESO-1. J Immunother. 2014 Apr;37(3):135-46.

  85. Creelan BC, Gainor JF, Govindan R, Hardy NM, Heymach J, Mudad R, Reckamp KL, Bardwell W, Holdich T, Bartlett-Pandite AN, Amado RG. Two phase I/II open label clinical trials evaluating the safety and efficacy of autologous T cells expressing enhanced TCRs specific for NY-ESO-1 or MAGE-A10 in subjects with stage IIIb or stage IV non-small cell lung cancer (NCT02588612/NCT02592577). J Clin Oncol. 2017;35(15_Suppl):TPS3096-TPS.

  86. Parkhurst MR, Joo J, Riley JP, Yu Z, Li Y, Robbins PF, Rosenberg SA. Characterization of genetically modified T-cell receptors that recognize the CEA:691-699 peptide in the context of HLA-A2.1 on human colorectal cancer cells. Clin Cancer Res. 2009 Jan 1;15(1):169-80.

  87. Wang QJ, Hanada K, Yang JC. Characterization of a novel nonclassical T cell clone with broad reactivity against human renal cell carcinomas. J Immunol. 2008 Sep 15;181(6):3769-76.

  88. Chinnasamy N, Wargo JA, Yu Z, Rao M, Frankel TL, Riley JP, Hong JJ, Parkhurst MR, Feldman SA, Schrump DS, Restifo NP, Robbins PF, Rosenberg SA, Morgan RA. A TCR targeting the HLA-A 0201-restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J Immunol. 2011 Jan 15;186(2):685-96.

  89. Yao X, Lu YC, Parker LL, Li YF, El-Gamil M, Black MA, Xu H, Feldman SA, van der Bruggen P, Rosenberg SA, Robbins PF. Isolation and characterization of an HLA-DPB1 04: 01-restricted MAGE-A3 T-cell receptor for cancer immunotherapy. J Immunother. 2016 Jun;39(5):191-201.

  90. Kebriaei P, Klebanoff CA, Creelan BC, Hong DS, Blumenschein GR, Drakaki A, Tewari A, Thomrongsith L, Jiang Y, Jain RK. A phase 1 multicenter study evaluating the safety and efficacy of MHC class II-restricted MAGE-A3/A6 T-cell receptor engineered T cells (KITE-718) in patients with advanced cancers. J Clin Oncol. 2018;36(15_suppl):TPS3104-TPS.

  91. Miyahara Y, Naota H, Wang L, Hiasa A, Goto M, Watanabe M, Kitano S, Okumura S, Takemitsu T, Yuta A, Majima Y, Lemonnier FA, Boon T, Shiku H. Determination of cellularly processed HLA-A2402-restricted novel CTL epitopes derived from two cancer germ line genes, MAGE-A4 and SAGE. Clin Cancer Res. 2005 Aug 1;11(15):5581-9.

  92. Kageyama S, Ikeda H, Miyahara Y, Imai N, Ishihara M, Saito K, Sugino S, Ueda S, Ishikawa T, Kokura S, Naota H, Ohishi K, Shiraishi T, Inoue N, Tanabe M, Kidokoro T, Yoshioka H, Tomura D, Nukaya I, Mineno J, Takesako K, Katayama N, Shiku H. Adoptive transfer of MAGE-A4 T-cell receptor gene-transduced lymphocytes in patients with recurrent esophageal cancer. Clin Cancer Res. 2015 May 15;21(10):2268-77.

  93. Border EC, Sanderson JP, Weissensteiner T, Gerry AB, Pumphrey NJ. Affinity-enhanced T-cell receptors for adoptive T-cell therapy targeting MAGE-A10: strategy for selection of an optimal candidate. Oncoimmunology. 2019;8(2):e1532759.

  94. Hong DS, Butler MO, Sullivan RJ, Erickson-Miller CL, Trivedi T, Chagin K, Bartlett-Pandite AN, Amado RG. A phase I single arm, open label clinical trial evaluating safety of MAGE-A10c796T in subjects with advanced or metastatic head and neck, melanoma, or urothelial tumors (NCT02989064). J Clin Oncol. 2017;35(15_Suppl):TPS3098-TPS.

  95. Thomas S, Xue SA, Cesco-Gaspere M, San Jose E, Hart DP, Wong V, Debets R, Alarcon B, Morris E, Stauss HJ. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J Immunol. 2007 Nov 1;179(9):5803-10.

  96. Nishimura MI, Avichezer D, Custer MC, Lee CS, Chen C, Parkhurst MR, Diamond RA, Robbins PF, Schwartzentruber DJ, Rosenberg SA. MHC class I-restricted recognition of a melanoma antigen by a human CD4+ tumor infiltrating lymphocyte. Cancer Res. 1999 Dec 15;59(24):6230-8.

  97. Moore T, Wagner CR, Scurti GM, Hutchens KA, Godellas C, Clark AL, Kolawole EM, Hellman LM, Singh NK, Huyke FA, Wang SY, Calabrese KM, Embree HD, Orentas R, Shirai K, Dellacecca E, Garrett-Mayer E, Li M, Eby JM, Stiff PJ, Evavold BD, Baker BM, Le Poole IC, Dropulic B, Clark JI, Nishimura MI. Clinical and immunologic evaluation of three metastatic melanoma patients treated with autologous melanoma-reactive TCR-transduced T cells. Cancer Immunol Immunother. 2018 Feb;67(2):311-25.

  98. Draper LM, Kwong ML, Gros A, Stevanovic S, Tran E, Kerkar S, Raffeld M, Rosenberg SA, Hinrichs CS. Targeting of HPV-16+ epithelial cancer cells by TCR gene engineered T cells directed against E6. Clin Cancer Res. 2015 Oct 1;21(19):4431-9.

  99. Hinrichs CS, Doran SL, Stevanovic S, Adhikary S, Mojadidi M, Kwong ML, Faquin WC, Feldman S, Somerville R, Sherry RM, Yang JC, Rosenberg SA. A phase I/II clinical trial of E6 T-cell receptor gene therapy for human papillomavirus (HPV)-associated epithelial cancers. J Clin Oncol. 2017;35(15_Suppl):3009.

  100. Jin BY, Campbell TE, Draper LM, Stevanovic S, Weissbrich B, Yu Z, Restifo NP, Rosenberg SA, Trimble CL, Hinrichs CS. Engineered T cells targeting E7 mediate regression of human papillomavirus cancers in a murine model. JCI Insight. 2018 Apr 19;3(8).

  101. Amir AL, van der Steen DM, van Loenen MM, Hagedoorn RS, de Boer R, Kester MD, de Ru AH, Lugthart GJ, van Kooten C, Hiemstra PS, Jedema I, Griffioen M, van Veelen PA, Falkenburg JH, Heemskerk MH. PRAME-specific Allo-HLA-restricted T cells with potent antitumor reactivity useful for therapeutic T-cell receptor gene transfer. Clin Cancer Res. 2011 Sep 1;17(17):5615-25.

  102. Docta RY, Ferronha T, Sanderson JP, Weissensteiner T, Pope GR, Bennett AD, Pumphrey NJ, Ferjentsik Z, Quinn LL, Wiedemann GE, Anderson VE, Saini M, Maroto M, Norry E, Gerry AB. Tuning T-cell receptor affinity to optimize clinical risk-benefit when targeting alpha-fetoprotein-positive liver cancer. Hepatology (Baltimore, MD). 2019 May;69(5):2061-75.

  103. Wang QJ, Yu Z, Griffith K, Hanada K, Restifo NP, Yang JC. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol Res. 2016 Mar;4(3):204-14.

  104. Dossa RG, Cunningham T, Sommermeyer D, Medina-Rodriguez I, Biernacki MA, Foster K, Bleakley M. Development of T-cell immunotherapy for hematopoietic stem cell transplantation recipients at risk of leukemia relapse. Blood. 2018 Jan 4;131(1):108-20.

对本文的引用
  1. Guerrouahen Bella, Elnaggar Muhammad, Al-Mohannadi Anjud, Kizhakayil Dhanya, Bonini Chiara, Benjamin Reuben, Brentjens Renier, Buchholz Christian J., Casorati Giulia, Ferrone Soldano, Locke Frederick L., Martin Francisco, Schambach Axel, Turtle Cameron, Veys Paul, van der Vliet Hans J., Maccalli Cristina, Proceedings From the First International Workshop at Sidra Medicine: “Engineered Immune Cells in Cancer Immunotherapy (EICCI): From Discovery to Off-the-Shelf Development”, 15th–16th February 2019, Doha, Qatar, Frontiers in Immunology, 11, 2021. Crossref

最新一期

Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Gene Analysis Jian Shen, Minzhe Li Exploration of Diagnostic Markers Associated with Inflammation in Chronic Kidney Disease Based on WGCNA and Machine Learning Qianjia Wu, Yang Yang, Chongze Lin Exploring the Mechanism of Zilongjin in Treating Lung Adenocarcinoma Based on Network Pharmacology Combined with Experimental Verification Kang Zhang, Xiaoqun Chen Efficacy and Nuances of Precision Molecular Engineering for Hodgkin’s Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain The Protective Effect and Mechanism of Mild Hypothermia on Lung Injury after Cardiopulmonary Resuscitation in Pigs Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Phillygenin Alleviates Arthritis through the Inhibition of the NLRP3 Inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, Peihong Zhang, Hong Chang Current and Future States of Natural Killer Cell−Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven S. Raman, Anahid Jewett, Jason Chiang Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett Clinical Significance of Serum CTRP3 Level in the Prediction of Cardiac and Intestinal Mucosal Barrier Dysfunction in Patients with Severe Acute Pancreatitis Qiang Shao, Lin Sun Serum Interleukin-6 and Serum Ferritin Levels Are the Independent Risk Factors for Pneumonia in Elderly Patients Hao Yuan, Jing Tian, Lu Wen

将发表的论文

Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain