图书馆订阅: Guest
免疫学评论综述™

每年出版 6 

ISSN 打印: 1040-8401

ISSN 在线: 2162-6472

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.3 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 2.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00079 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.24 SJR: 0.429 SNIP: 0.287 CiteScore™:: 2.7 H-Index: 81

Indexed in

Beta-Adrenergic Signaling in Tumor Immunology and Immunotherapy

卷 39, 册 2, 2019, pp. 93-103
DOI: 10.1615/CritRevImmunol.2019031188
Get accessGet access

摘要

Communication between the nervous and immune systems is required for the body to regulate physiological homeostasis. Beta-adrenergic receptors expressed on immune cells mediate the modulation of immune response by neural activity. Activation of beta-adrenergic signaling results in suppression of antitumor immune response and limits the efficacy of cancer immunotherapy. Beta-adrenergic signaling is also involved in regulation of hematopoietic reconstitution, which is critical to the graft-versus-tumor (GVT) effect and to graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (HCT). In this review, the function of beta-adrenergic signaling in mediating tumor immunosuppression will be highlighted. We will also discuss the implication of targeting beta-adrenergic signaling to improve the efficacy of cancer immunotherapy including the GVT effect, and to diminish the adverse effects including GVHD.

参考文献
  1. Yarchoan M, Johnson BA 3rd, Lutz ER, Laheru DA, Jaffee EM. Targeting neoantigens to augment antitumour immunity. Nat Rev Cancer. 2017;17(9):569.

  2. Finn OJ. The dawn of vaccines for cancer prevention. Nat Rev Immunol. 2018;18(3):183-94.

  3. Wong KK, Li WA, Mooney DJ, Dranoff G. Advances in therapeutic cancer vaccines. Adv Immunol. 2016;130: 191-249.

  4. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411-22.

  5. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205-14.

  6. Weiner LM, Dhodapkar MV, Ferrone S. Monoclonal anti-bodies for cancer immunotherapy. Lancet. 2009;373(9668): 1033-40.

  7. Weiner LM, Surana R, Wang S. Monoclonal anti-bodies:versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317-27.

  8. Dranoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer. 2004;4(1):11-22.

  9. Rosenberg SA, Restifo NP. Adoptive cell transfer as per-sonalized immunotherapy for human cancer. Science. 2015;348(6230):62-8.

  10. Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):49-60.

  11. Daher M, Rezvani K. Next generation natural killer cells for cancer immunotherapy: the promise of genetic engineering. Curr Op Immunol. 2018;51:146-53.

  12. Rezvani K, Rouce R, Liu E, Shpall E. Engineering natural killer cells for cancer immunotherapy. Mol Ther. 2017;25(8):1769-81.

  13. Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I. Emerging opportunities and challenges in cancer immunotherapy. Clin Cancer Res. 2016;22(8):1845-55.

  14. Tang J, Yu JX, Hubbard-Lucey VM, Neftelinov ST, Hodge JP, Lin Y. Trial watch: the clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat Rev Drug Discov. 2018;17(12):854-55.

  15. Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16(9):566-81.

  16. Hu Z, Ott PA, Wu CJ. Towards personalized tumour-specific therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18(3):168-82.

  17. Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Lower M, Bukur V, Tadmor AD, Luxemburger U, Schrors B, Omokoko T, Vormehr M, Albrecht C, Paruzynski A, Kuhn AN, Buck J, Heesch S, Schreeb KH, Muller F, Ortseifer I, Vogler I, Godehardt E, Attig S, Rae R, Breitkreuz A, Tolliver C, Suchan M, Martic G, Hohberger A, Sorn P, Diekmann J, Ciesla J, Waksmann O, Brack AK, Witt M, Zillgen M, Rothermel A, Kasemann B, Langer D, Bolte S, Diken M, Kreiter S, Nemecek R, Gebhardt C, Grabbe S, Holler C, Utikal J, Huber C, Loquai C, Tureci O. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547(7662):222-26.

  18. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig K, Neuberg D, Ritz J, Lander ES Fritsch EF, Hacohen N, Wu CJ. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217-21.

  19. Larkin J, Lao CD, Urba WJ, McDermott DF, Horak C, Jiang J, Wolchok JD. Efficacy and safety of nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: a pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433-40.

  20. Long GV, Weber JS, Larkin J, Atkinson V, Grob JJ, Schadendorf D, Dummer R, Robert C, Marquez-Rodas I, McNeil C, Schmidt H, Briscoe K, Baurain JF, Hodi FS, Wolchok JD. Nivolumab for patients with advanced mel-anoma treated beyond progression: analysis of 2 phase 3 clinical trials. JAMA Oncol. 2017;3(11):1511-9.

  21. Ruella M, Xu J, Barrett DM, Fraietta JA, Reich TJ, Ambrose DE, Klichinsky M, Shestova O, Patel PR, Kulikovskaya I, Nazimuddin F, Bhoj VG, Orlando EJ, Fry TJ, Bitter H, Maude SL, Levine BL, Nobles CL, Bushman FD, Young RM, Scholler J, Gill SI, June CH, Grupp SA, Lacey SF, Melenhorst JJ. Induction of resistance to chi- meric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nat Med. 2018;24(10):1499-503.

  22. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of re-sistance to immune checkpoint inhibitors. Brit J Cancer. 2018;118(1):9.

  23. Seidel JA, Otsuka A, Kabashima K. Anti-PD-1 and Anti- CTLA-4 therapies in cancer: mechanisms of action efficacy and limitations. Frontiers Oncol. 2018;8:86.

  24. Wang DY, Salem JE, Cohen JV, Chandra S, Menzer C, Ye F, Zhao S, Das S, Beckermann KE, Ha L, Rathmell WK, Ancell KK, Balko JM, Bowman C, Davis EJ, Chism DD, Horn L, Long GV, Carlino MS, Lebrun-Vignes B, Eroglu Z, Hassel JC, Menzies AM, Sosman JA, Sullivan RJ, Moslehi JJ, Johnson DB. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 2018;4(12):1721-8.

  25. Naidoo J, Page DB, Li BT, Connell LC, Schindler K, Lacouture ME, Postow MA, Wolchok JD. Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol. 2015;26(12):2375-91.

  26. Semper H, Muehlberg F, Schulz-Menger J, Allewelt M, Grohe C. Drug-induced myocarditis after nivolumab treatment in a patient with PDL1- negative squamous cell carcinoma of the lung. Lung Cancer. 2016;99:117-9.

  27. Tadokoro T, Keshino E, Makiyama A, Sasaguri T, Ohshima K, Katano H, Mohri M. Acute lymphocytic myocarditis with anti-PD-1 antibody nivolumab. Circ Heart Failure. 2016;9(10):e003514.

  28. Pavlov VA, Tracey KJ. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat Neurosci. 2017;20(2):156-66.

  29. Pavlov VA, Chavan SS, Tracey KJ. Molecular and functional neuroscience in immunity. Ann Rev Immunol. 2018;36 783-812.

  30. Chavan SS, Tracey KJ. Essential neuroscience in immunology. J Immunol. 2017;198(9):3389-97.

  31. Bucsek MJ, Giridharan T, MacDonald CR, Hylander BL, Repasky EA. An overview of the role of sympathetic regulation of immune responses in infectious disease and auto- immunity. Int J Hypertherm. 2018;34(2):135-43.

  32. Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017;46(6):927-42.

  33. Qiao G, Chen M, Bucsek MJ, Repasky EA, Hylander BL. Adrenergic signaling: a targetable checkpoint limiting development of the antitumor immune response. Front Immunol. 2018;9:164.

  34. Mani SK. Neuroendocrine regulation of reproduction stress inflammation and energy homeostasis. J Neuroendocrinol. 2018;30(10):e12648.

  35. Padro CJ, Sanders VM. Neuroendocrine regulation of in-flammation. Semin Immunol. 2014;26(5):357-68.

  36. Eng JW, Kokolus KM, Reed CB, Hylander BL, Ma WW, Repasky EA. A nervous tumor microenvironment: the impact of adrenergic stress on cancer cells immunosuppression and immunotherapeutic response. Cancer Immunol Immunother. 2014;63(11):1115-28.

  37. Xu Z, Shioda S, Masahisa J, Kawakami Y, Ohtaki H, Calista Lim H, Wang S, Zhao X, Liu Y, Zhou D, Guo Y. Role of the autonomic nervous system in the tumor micro-environment and its therapeutic potential. Curr Pharm Design. 2017;23(11):1687-92.

  38. Arese M, Bussolino F, Pergolizzi M, Bizzozero L, Pascal D. Tumor progression: the neuronal input. Ann Trans Med. 2018;6(5):89.

  39. Thaker PH, Han LY, Kamat AA, Arevalo JM, Takahashi R, Lu C, Jennings NB, Armaiz-Pena G, Bankson JA, Ravoori M, Merritt WM, Lin YG, Mangala LS, Kim TJ, Coleman RL, Landen CN, Li Y, Felix E, Sanguino AM, Newman RA, Lloyd M, Gershenson DM, Kundra V, Lopez-Berestein G, Lutgendorf SK, Cole SW, Sood AK. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med. 2006;12(8):939-44.

  40. Cole SW, Nagaraja AS, Lutgendorf SK, Green PA, Sood AK. Sympathetic nervous system regulation of the tumour microenvironment. Nat Rev Cancer. 2015;15(9):563-72.

  41. Hanoun M, Maryanovich M, Arnal-Estape A, Frenette PS. Neural regulation of hematopoiesis, inflammation, and cancer. Neuron. 2015 Apr 22;86(2):360-73.

  42. Sloan EK, Priceman SJ, Cox BF, Yu S, Pimentel MA, Tangkanangnukul V, Arevalo JM, Morizono K, Karanikolas BD, Wu L, Sood AK. The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res. 2010;70(18):7042-52.

  43. Armaiz-Pena GN, Gonzalez-Villasana V, Nagaraja AS, Rodriguez-Aguayo C, Sadaoui NC, Stone RL, Matsuo K, Dalton HJ, Previs RA, Jennings NB, Dorniak P. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth. Oncotarget. 2015 Feb;6(6):4266.

  44. Bower JE, Shiao SL, Sullivan P, Lamkin DM, Atienza R, Mercado F, Arevalo J, Asher A, Ganz PA, Cole SW. Prometastatic molecular profiles in breast tumors from socially isolated women. JNCI Cancer Spectr. 2018;2(3):pky029.

  45. Lamkin DM, Ho HY, Ong TH, Kawanishi CK, Stoffers VL, Ahlawat N, Ma JCY, Arevalo JMG, Cole SW, Sloan EK. beta-adrenergic-stimulated macrophages: comprehensive localization in the M1-M2 spectrum. Brain Behav Immun. 2016;57:338-46.

  46. Qin JF, Jin FJ, Li N, Guan HT, Lan L, Ni H, Wang Y. Adrenergic receptor P2 activation by stress promotes breast cancer progression through macrophages M2 polarization in tumor microenvironment. BMB Rep. 2015 May;48(5):295.

  47. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006 Jan 27;124(2):263-6.

  48. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer. 2004;4(1):71.

  49. Yang M, McKay D, Pollard JW, Lewis CE. Diverse functions of macrophages in different tumor microenvironments. Cancer Res. 2018;78(19):5492-503.

  50. Kokolus KM, Capitano ML, Lee CT, Eng JW, Waight JD, Hylander BL, Sexton S, Hong CC, Gordon CJ, Abrams SI, Repasky EA. Baseline tumor growth and immune control in laboratory mice are significantly influenced by sub-thermoneutral housing temperature. Proc Natl Acad Sci. 2013;110(50):20176-81.

  51. Eng JW, Reed CB, Kokolus KM, Pitoniak R, Utley A, Bucsek MJ, Ma WW, Repasky EA, Hylander BL. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through p 2-adrenergic receptor activation. Nat Commun. 2015;6:6426.

  52. Bucsek MJ, Qiao G, MacDonald CR, Giridharan T, Evans L, Niedzwecki B, Liu H, Kokolus KM, Eng JW, Messmer MN, Attwood K. p-adrenergic signaling in mice housed at standard temperatures suppresses an effector pheno-type in CD8+ T cells and undermines checkpoint inhibitor therapy. Cancer Res. 2017;77(20):5639-51.

  53. Nissen MD, Sloan EK, Mattarollo SR. p-adrenergic signaling impairs antitumor CD8+ T-cell responses to B-cell lymphoma immunotherapy. Cancer Immunol Res. 2018;6(1):98-109.

  54. Budiu RA, Vlad AM, Nazario L, Bathula C, Cooper KL, Edmed J, Thaker PH, Urban J, Kalinski P, Lee AV, Elishaev EL. Restraint and social isolation stressors differentially regulate adaptive immunity and tumor angiogenesis in a breast cancer mouse model. Cancer Clin Oncol. 2017;6(1):12.

  55. Kalinichenko VV, Mokyr MB, Graf LH Jr, Cohen RL, Chambers DA. Norepinephrine-mediated inhibition of antitumor cytotoxic T lymphocyte generation involves a beta-adrenergic receptor mechanism and decreased TNF-alpha gene expression. J Immunol. 1999;163(5):2492-9.

  56. Qiao G, Bucsek MJ, Winder NM, Chen M, Giridharan T, Olejniczak SH, Hylander BL, Repasky EA. P-Adrenergic signaling blocks murine CD8+ T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunol Immunother. 2019;68(1):11-22.

  57. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609.

  58. Ben-Shaanan TL, Schiller M, Azulay-Debby H, Korin B, Boshnak N, Koren T, Krot M, Shakya J, Rahat MA, Hakim F, Rolls A. Modulation of anti-tumor immunity by the brain's reward system. Nat Commun. 2018;9(1):2723.

  59. Wrobel LJ, Bod L, Lengagne R, Kato M, Prevost-Blondel A, Le Gal FA. Propranolol induces a favourable shift of 60. Cao L, Hudson CA, Lawrence DA. Acute cold/restraint stress inhibits host resistance to Listeria monocytogenes via pi-adrenergic receptors. Brain Behav Immun. 2003;17(2):121-33.

  60. Emeny RT, Gao D, Lawrence DA. pi-adrenergic receptors on immune cells impair innate defenses against Listeria. J Immunol. 2007;178(8):4876-84.

  61. Frick LR, Rapanelli M, Bussmann UA, Klecha AJ, Arcos ML, Genaro AM, Cremaschi GA. Involvement of thyroid hormones in the alterations of T-cell immunity and tumor progression induced by chronic stress. Biol Psych. 2009;65(11):935-42.

  62. Frick LR, Palumbo ML, Zappia MP, Brocco MA, Cremaschi GA, Genaro AM. Inhibitory effect of fluoxetine on lymphoma growth through the modulation of antitumor T-cell response by serotonin-dependent and independent mechanisms. Biochem Pharmacol. 2008;75(9):1817-26.

  63. Rosso D, Emilia M, Sterle HA, Cremaschi GA, Genaro AM. Beneficial effect of fluoxetine and sertraline on chronic stress-induced tumor growth and cell dissemination in a mouse model of lymphoma: crucial role of anti-tumor immunity. Front Immunol. 2018;9:1341.

  64. Kokolus KM, Zhang Y, Sivik JM, Schmeck C, Zhu J, Repasky EA, Drabick JJ, Schell TD. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. OncoImmunology. 2018;7(3):e1405205.

  65. Bakos O, Lawson C, Rouleau S, Tai LH. Combining surgery and immunotherapy: turning an immunosuppressive effect into a therapeutic opportunity. J Immunother Cancer. 2018;6(1):86.

  66. Glasner A, Avraham R, Rosenne E, Benish M, Zmora O, Shemer S, Meiboom H, Ben-Eliyahu S. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol. 2010;184(5):2449-57.

  67. Ben-Eliyahu S, Shakhar G, Page GG, Stefanski V, Shakhar K. Suppression of NK cell activity and of resistance to metastasis by stress: a role for adrenal catecholamines and p-adrenoceptors. Neuroimmunomodulation. 2000;8(3):154-64.

  68. Shakhar G, Ben-Eliyahu S. In vivo p-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol. 1998;160(7):3251-8.

  69. Katafuchi TO, Take SA, Hori TE. Roles of sympathetic nervous system in the suppression of cytotoxicity of splenic natural killer cells in the rat. J Physiol. 1993;465(1):343-57.

  70. Inbar S, Neeman E, Avraham R, Benish M, Rosenne E, Ben-Eliyahu S. Do stress responses promote leukemia progression? An animal study suggesting a role for epinephrine and prostaglandin-E2 through reduced NK ac-tivity. PLoS One. 2011;6(4):e19246.

  71. Ben-Eliyahu S, Shakhar G, Shakhar K, Melamed R. Timing within the oestrous cycle modulates adrenergic suppression of anti-tumor immunity in a murine spontaneous model of melanoma. Oncotarget. 2016;7(47):77825.NK activity and resistance to metastasis: possible clinical implications. Brit J Cancer. 2000;83(12):1747.

  72. Rosenne E, Sorski L, Shaashua L, Neeman E, Matzner P, Levi B, Ben-Eliyahu S. In vivo suppression of NK cell cytotoxicity by stress and surgery: glucocorticoids have a minor role compared to catecholamines and prostaglandins. Brain Behav Immun. 2014;37:207-19.

  73. Melamed R, Rosenne E, Shakhar K, Schwartz Y, Abudarham N, Ben-Eliyahu S. Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a P-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun. 2005;19(2):114-26.

  74. Sorski L, Melamed R, Matzner P, Lavon H, Shaashua L, Rosenne E, Ben-Eliyahu S. Reducing liver metastases of colon cancer in the context of extensive and minor surgeries through beta-adrenoceptors blockade and COX2 inhibition. Brain Behav Immun. 2016;58:91-8.

  75. Shaashua L, Shabat-Simon M, Haldar R, Matzner P, Zmora O, Shabtai M, Sharon E, Allweis T, Barshack I, Hayman L, Arevalo J. Perioperative COX-2 and P-adrenergic blockade improves metastatic biomarkers in breast cancer patients in a phase-II randomized trial. Clin Cancer Res. 2017;23(16):4651-61.

  76. Haldar R, Shaashua L, Lavon H, Lyons YA, Zmora O, Sharon E, Birnbaum Y, Allweis T, Sood AK, Barshack I, Cole S. Perioperative inhibition of P-adrenergic and COX2 signaling in a clinical trial in breast cancer patients improves tumor Ki-67 expression, serum cytokine levels, and PBMCs transcriptome. Brain Behav Immun. 2018 Oct 1;73:294-309.

  77. NakaiA, Hayano Y, Furuta F, Noda M, Suzuki K. Control of lymphocyte egress from lymph nodes through p2-adrenergic receptors. J Exper Med. 2014;211(13):2583-98.

  78. Suzuki K, Hayano Y, Nakai A, Furuta F, Noda M. Adrenergic control of the adaptive immune response by diurnal lymphocyte recirculation through lymph nodes. J Exper Med. 2016;213(12):2567-74.

  79. Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front Immunol. 2017;8:1850.

  80. Idorn M. Chemokine receptors and exercise to tackle the inadequacy of T cell homing to the tumor site. Cells. 2018(8):108.

  81. Maus MV, June CH. Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res. 2016;22(8):1875-84.

  82. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, Kirkwood JM, Gajewski TF, Chen L, Gorski KS, Anderson AA, Diede SJ, Lassman ME, Gansert J, Hodi FS, Long GV. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2018;174(4):1031-1032.

  83. Peranzoni E, Lemoine J, Vimeux L, Feuillet V, Barrin S, Kantari-Mimoun C, Bercovici N, Guerin M, Biton J, Ouakrim H, Regnier F. Macrophages impede CD8 T cells from reaching tumor cells and limit the efficacy of anti-PD-1 treatment. Proc Natl Acad Sci. 2018;115(17):E4041-50.

  84. Gooley TA, Chien JW, Pergam SA, Hingorani S, Sorror ML, Boeckh M, Martin PJ, Sandmaier BM, Marr KA, Appelbaum FR, Storb R. Reduced mortality after allogeneic hematopoietic-cell transplantation. N Engl J Med. 2010;363(22):2091-101.

  85. Gonzalez-Vicent M, Perez MA. Allogeneic hematopoietic stem-cell transplantation from haploidentical donors using "ex-vivo"T-cell depletion in pediatric patients with hematological malignancies: state of the art review. Curr Op Oncol. 2018;30(6):396-401.

  86. Porter DL. Allogeneic immunotherapy to optimize the graft-versus-tumor effect: concepts and controversies. ASH Educ Progr Book. 2011;2011(1):292-8.

  87. Szyska M, Na IK. Bone marrow GVHD after allogeneic hematopoietic stem cell transplantation. Front Immunol. 2016;7:118.

  88. Rezvani AR, Storb RF. Separation of graft-vs.-tumor effects from graft-vs.-host disease in allogeneic hematopoietic cell transplantation. J Autoimmun. 2008;30(3):172-9.

  89. Mohammadpour H, O'Neil R, Qiu J, McCarthy PL, Repasky EA, Cao X. Blockade of host p2-adrenergic receptor enhances graft-versus-tumor effect through modulating APCs. J Immunol. 2018;200(7):2479-88.

  90. Leigh ND, Kokolus KM, O'Neill RE, Du W, Eng JW, Qiu J, Chen GL, McCarthy PL, Farrar JD, Cao X, Repasky EA. Housing temperature-induced stress is suppressing murine graft-versus-host disease through P2-adrenergic receptor signaling. J Immunol. 2015;195(10):5045-54.

  91. Morrison SJ, Scadden DT. The bone marrow niche for hae-matopoietic stem cells. Nature. 2014;505(7483):327.

  92. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, Scadden DT, Ma'ayan A, Enikolopov GN, Frenette PS. Mesenchymal and haema-topoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829.

  93. Cao X, Wu X, Frassica D, Yu B, Pang L, Xian L, Wan M, Lei W, Armour M, Tryggestad E, Wong J. Irradiation induces bone injury by damaging bone marrow microenvironment for stem cells. Proc Natl Acad Sci. 2011;108(4):1609-14.

  94. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS. Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med. 2013;19(6):695-703.

  95. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407-21.

  96. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H. Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell. 2011;147(5):1146-58.

  97. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y, Zaltsman A, Von Zur Muhlen C, Bode C, Fricchione GL, Denninger J, Lin CP. Chronic variable stress activates hematopoietic stem cells. Nat Med. 2014;20(7):754.

  98. Vasamsetti SB, Florentin J, Coppin E, Stiekema LC, Zheng KH, Nisar MU, Sembrat J, Levinthal DJ, Rojas M, Stroes ES, Kim K. Sympathetic neuronal activation triggers myeloid progenitor proliferation and differentiation. Immunity. 2018;49(1):93-106.

  99. Mendez-Ferrer S, Battista M, Frenette PS. Cooperation of P2- and p3-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann New York Acad Sci. 2010; 1192(1):139-44.

  100. Scheiermann C, Kunisaki Y, Lucas D, Chow A, Jang JE, Zhang D, Hashimoto D, Merad M, Frenette PS. Adrenergic nerves govern circadian leukocyte recruitment to tissues. Immunity. 2012;37(2):290-301.

  101. Richter R, Forssmann W, Henschler R. Current developments in mobilization of hematopoietic stem and progenitor cells and their interaction with niches in bone marrow. Transfus Med Hemother. 2017;44(3):151-64.

  102. Karachaliou N, Gonzalez-Cao M, Sosa A, Berenguer J, Bracht JW, Ito M, Rosell R. The combination of checkpoint immunotherapy and targeted therapy in cancer. Ann Transl Med. 2017;5(19):388. doi: 10.21037/atm.2017.06.47.

  103. Melichar B, Spisarova M. Combined regimens in immuno-therapy. Klin Onkol. 2017;30(S3):45-9.

  104. Moya-Horno I, Viteri S, Karachaliou N, Rosell R. Combination of immunotherapy with targeted therapies in advanced non-small cell lung cancer (NSCLC). Ther Adv Med Oncol. 2018;10:17588340-745012.

  105. Maeda Y. New immunotherapy-based approach in allogeneic hematopoietic stem cell transplantation. Int J Hematol. 2018;107(2):129.

  106. Bouchlaka MN, Redelman D, Murphy WJ. Immunotherapy following hematopoietic stem cell transplantation: potential for synergistic effects. Immunotherapy. 2010;2(3):399-418.

  107. Gschweng E, De Oliveira S, Kohn DB. Hematopoietic stem cells for cancer immunotherapy. Immunol Rev. 2014;257(1):237-49.

  108. Barre PV, Padmaja G, Suvashisa Rana T. Stress and quality of life in cancer patients: medical and psychological intervention. Indian J Psych Med. 2018;40(3):232.

  109. Sehlen S, Hollenhorst H, Schymura B, Herschbach P, Aydemir U, Firsching M, Duhmke E. Psychosocial stress in cancer patients during and after radiotherapy. Strahlenther Onkol. 2003;179(3):175-80.

  110. Chen H, Liu D, Guo L, Cheng X, Guo N, Shi M. Chronic psychological stress promotes lung metastatic colonization of circulating breast cancer cells by decorating a pre-metastatic niche through activating beta-adrenergic signaling. J Pathol. 2018;244(1):49-60.

  111. Goyal NG, Maddocks KJ, Johnson AJ, Byrd JC, Westbrook TD, Andersen BL. Cancer-specific stress and trajectories of psychological and physical functioning in patients with relapsed/refractory chronic lymphocytic leukemia. Ann Behav Med. 2018;52(4):287-98.

  112. Tang J, Li Z, Lu L, Cho CH. beta-adrenergic system a back-stage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol. 2013;23(6 Pt B):533-42.

  113. Na Z, Qiao X, Hao X, Fan L, Xiao Y, Shao Y, Sun M, Feng Z, Guo W, Li J, Li J. The effects of beta-blocker use on cancer prognosis: a meta-analysis based on 319,006 patients. OncoTargets Ther. 2018;11:4913.

  114. De Giorgi V, Grazzini M, Benemei S, Marchionni N, Botteri E, Pennacchioli E, Geppetti P, Gandini S. Propranolol for off-label treatment of patients with melanoma: results from a cohort study. JAMA Oncol. 2018;4(2):e172908.

  115. Hwa YL, Shi Q, Kumar SK, Lacy MQ, Gertz MA, Kapoor P, Buadi FK, Leung N, Dingli D, Go RS, Hayman SR, Gonsalves WI, Russell S, Lust JA, Lin Y, Rajkumar SV, Dispenzieri A. Beta-blockers improve survival outcomes in patients with multiple myeloma: a retrospective evaluation. Am J Hematol. 2017;92(1):50-5.

  116. Amaya CN, Perkins M, Belmont A, Herrera C, Nasrazadani A, Vargas A, Khayou T, Montoya A, Ballou Y, Galvan D, Rivas A, Rains S, Patel L, Ortega V, Lopez C, Chow W, Dickerson EB, Bryan B. Non-selective beta blockers inhibit angiosarcoma cell viability and increase progression free- and overall survival in patients diagnosed with metastatic angiosarcoma. Oncoscience. 2018;5(3-4):109-19.

  117. Knight JM, Kerswill SA, Hari P, Cole SW, Logan BR, D'Souza A, Shah NN, Horowitz MM, Stolley MR, Sloan EK, Giles KE, Costanzo ES, Hamadani M, Chhabra S, Dhakal B, Rizzo JD. Repurposing existing medications as cancer therapy: design and feasibility of a randomized pilot investigating propranolol administration in patients receiving hematopoietic cell transplantation. BMC Cancer. 2018;18(1):593.

对本文的引用
  1. Filippi Luca, Bruno Gennaro, Domazetovic Vladana, Favre Claudio, Calvani Maura, Current Therapies and New Targets to Fight Melanoma: A Promising Role for the β3-Adrenoreceptor, Cancers, 12, 6, 2020. Crossref

  2. Hutchings Charlotte, Phillips Jade A., Djamgoz Mustafa B.A., Nerve input to tumours: Pathophysiological consequences of a dynamic relationship, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1874, 2, 2020. Crossref

  3. Mravec Boris, Horvathova Lubica, Hunakova Luba, Neurobiology of Cancer: The Role of β-Adrenergic Receptor Signaling in Various Tumor Environments, International Journal of Molecular Sciences, 21, 21, 2020. Crossref

  4. Archer M., Dogra N., Dovey Z., Ganta T., Jang H.-S., Khusid J. A., Lantz A., Mihalopoulos M., Stockert J. A., Zahalka A., Björnebo L., Gaglani S., Noh M. R., Kaplan S. A., Mehrazin R., Badani K. K., Wiklund P., Tsao K., Lundon D. J., Mohamed N., Lucien F., Padanilam B., Gupta M., Tewari A. K., Kyprianou N., Role of α- and β-adrenergic signaling in phenotypic targeting: significance in benign and malignant urologic disease, Cell Communication and Signaling, 19, 1, 2021. Crossref

  5. Patel Arjun, Subramanian Guru Murthy Guru, Hamadani Mehdi, Szabo Aniko, Knight Jennifer M., The impact of beta-blocker use at the time of hematopoietic cell transplantation on the development of acute and chronic graft-versus-host disease, Hematology/Oncology and Stem Cell Therapy, 2021. Crossref

  6. Li Chaoran, Li Tian, Tang Runwei, Yuan Shuai, Zhang Weihong, β-Blocker use is not associated with improved clinical outcomes in women with breast cancer: a meta-analysis, Bioscience Reports, 40, 6, 2020. Crossref

  7. Barra Jonathan, Cerda-Infante Javier, Sandoval Lisette, Gajardo-Meneses Patricia, Henriquez Jenny F., Labarca Mariana, Metz Claudia, Venegas Jaime, Retamal Claudio, Oyanadel Claudia, Cancino Jorge, Soza Andrea, Cuello Mauricio A., Roa Juan Carlos, Montecinos Viviana P., Gonzalez Alfonso, D-Propranolol Impairs EGFR Trafficking and Destabilizes Mutant p53 Counteracting AKT Signaling and Tumor Malignancy, Cancers, 13, 14, 2021. Crossref

  8. Lei Zhen, Yang Weiyi, Zuo Ying, Xue Jianxin, Beta-blocker and survival in patients with lung cancer: A meta-analysis, PLOS ONE, 16, 2, 2021. Crossref

  9. Kennedy Oliver J., Kicinski Michal, Valpione Sara, Gandini Sara, Suciu Stefan, Blank Christian U., Long Georgina V., Atkinson Victoria G., Dalle Stéphane, Haydon Andrew M., Meshcheryakov Andrey, Khattak Adnan, Carlino Matteo S., Sandhu Shahneen, Larkin James, Puig Susana, Ascierto Paolo A., Rutkowski Piotr, Schadendorf Dirk, Koornstra Rutger, Hernandez-Aya Leonel, Di Giacomo Anna M., van den Eertwegh Alfonsus J.M., Grob Jean-Jacques, Gutzmer Ralf, Jamal Rahima, van Akkooi Alexander C.J., Robert Caroline, Eggermont Alexander M.M., Lorigan Paul, Mandala Mario, Prognostic and predictive value of β-blockers in the EORTC 1325/KEYNOTE-054 phase III trial of pembrolizumab versus placebo in resected high-risk stage III melanoma, European Journal of Cancer, 165, 2022. Crossref

  10. Knight Jennifer M., Taylor Mallory R., Rentscher Kelly E., Henley Elisabeth C., Uttley Hannah A., Nelson Ashley M., Turcotte Lucie M., McAndrew Natalie S., Amonoo Hermioni L., Mohanraj Lathika, Kelly Debra Lynch, Costanzo Erin S., Biobehavioral Implications of Covid-19 for Transplantation and Cellular Therapy Recipients, Frontiers in Immunology, 13, 2022. Crossref

将发表的论文

Identification of a novel five-gene prognostic model for laryngeal cancer associated with mitophagy using integrated bioinformatics analysis and experimental verification Dong Song, Lun Dong, Mei Wang, Xiaoping Gao Function of steroid receptor coactivators (SRCs) in T cells and cancers: Implications for cancer immunotherapy Wencan Zhang, Xu Cao, Hongmin Wu, Xiancai Zhong, Yun Shi, Zuoming Sun Electroacupuncture Alleviates Ischemic Stroke by Activating the mTOR/SREBP1 Pathway Jiawang Lang, Jianchang Luo, Luodan Wang, Wenbin Xu, Jie Jia, Zhipeng Zhao, Boxu Lang KIAA1429 induces the m6A modification of LINC01106 to enhance the malignancy of lung adenocarcinoma cell via JAK/STAT3 pathway Di Xu, Ziming Wang, Fajiu Li Effect of p-estrogen receptor at serine on its function and breast growth Yuan Liang, Junhui Qin, Tiancheng Ma, Tong Yang, Zhenyu Ke, Ruian Wang Mechanistic Insights into Tanshinone IIA in the Amelioration of Post-Thyroidectomy Hypoparathyroidism Xiaoyu Qian, Lin Li, Liang Chen, Chao Shen, Jian Tang MiRNA let-7d-5p alleviates inflammatory responses by targeting Map3k1 and inactivating ERK/p38 MAPK signaling in microglia Fan Fang, Cheng Chen Role of Natural Killer Cells as Cell-Based Immunotherapy in Oral Tumor Eradication and Differentiation Both In Vivo and In Vitro Kawaljit Kaur, Anahid Jewett The Current and Future States of Natural Killer Cell-Based Immunotherapy in Hepatocellular Carcinoma Tu Nguyen, Po-Chun Chen, Janet Pham, Kawaljit Kaur, Steven Raman, Anahid Jewett, Jason Chiang Phillygenin alleviated arthritis through the inhibition of NLRP3 inflammasome and Ferroptosis by AMPK Jianghui Wang, Shufang Ni, Kai Zheng, Yan Zhao, peihong zhang, Hong Chang The value of systemic immune-inflammation index and T cell subsets in the severity and prognosis of sepsis Hao Zhou Efficacy and Nuances of Precision Molecular Engineering for Hodgkin's Disease to a Gene Therapeutic Approach Muhammad Imran Qadir, Bilal Ahmed, Nadir Hussain Serum interleukin 6 and ferritin levels are the independent risk factors for pneumonia in elderly patients Hao Yuan, Jing Tian, Lu Wen Exploration of diagnostic markers associated with inflammation in chronic kidney disease (CKD) based on WGCNA and machine learning Qianjia Wu, Yang Yang, Chongze Lin Clinical significance of serum CTRP3 level in the prediction of cardiac dysfunction and intestinal mucosal barrier dysfunction in patients with severe acute pancreatitis Qiang Shao, Lin Sun The protective effect and mechanism of mild hypothermia on pig lung injury after cardiopulmonary resuscitation Jinlin Ren, Fangfang Zhu, Dongdong Sang, Mulin Cong, Shujuan Jiang Exploring mechanism of Zilongjin in treating lung adenocarcinoma based on network pharmacology combined with experimental verification Kang Zhang, Xiaoqun Chen Gastric Cancer Immune Subtypes and Prognostic Modeling: Insights from Aging-Related Genes Analysis Jian Shen, Minzhe Li Effects of different doses of dexmedetomidine on the prevention of postoperative sleep disturbance and serum neurotransmitter level in patients under general anesthesia Huifei Lu, Fei He, Ying Huang, Zhongliang Wei Identification of key ubiquitination-related genes and their associated with immune infiltration in osteoarthritis based on mRNA-miRNA network Dalu Yuan, Hailiang Shen, Lina Bai, Menglin Li, Qiujie Ye Diagnostic and Prognostic value of peripheral neutrophil CD64 index in elderly patients with community-acquired pneumonia Yan Li, Jing Zhang, Suhang Wang, Jie Cao Identification of Metabolism-Related Prognostic Biomarkers and Immune Features of Head and Neck Squamous Cell Carcinoma Rongjin Zhou, Junguo Wang Downregulation of miR-503-5p promotes the development of pancreatic cancer via targeting cyclin E2 Fei Li, Ying-pei Ling, Pan Wang, Shi-cheng Gu, Hao Jiang, Jie Zhu
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain