图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
免疫学评论综述™
影响因子: 1.352 5年影响因子: 3.347 SJR: 0.657 SNIP: 0.55 CiteScore™: 2.19

ISSN 打印: 1040-8401
ISSN 在线: 2162-6472

免疫学评论综述™

DOI: 10.1615/CritRevImmunol.2020033114
pages 275-288

Pyrin and Hematopoietic Interferon-Inducible Nuclear Protein Domain Proteins: Innate Immune Sensors for Cytosolic and Nuclear DNA

Mohammad Reza Atashzar
Department of Immunology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
Gholamreza Daryabor
Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
Dieter Kabelitz
Institute of Immunology, University of Kiel, Kiel, Germany
Kurosh Kalantar
Department of Immunology, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran

ABSTRACT

The innate immune system is the first line of defense against microbial pathogens. The response of innate immunity is initiated by molecules known as pattern recognition receptors (PRRs). Such responses are often triggered by nucleic acids that are delivered to the cytoplasm or nucleus of cells. The ability to recognize foreign nucleic acids in these two locations is an important defense mechanism of the human innate immune system. Several PRRs are located in the cytosol or nucleus and detect foreign DNAs. The pyrin and hematopoietic interferon-inducible nuclear (PYHIN) domain protein is a family of PRRs that includes interferon-inducible protein 16, absent in melanoma 2, PYHIN 1 (or interferon-inducible protein X, as it is also known), myeloid cell nuclear differentiation antigen, and pyrin domain only protein 3. These nuclear and cytosolic sensors play an essential part in host defense of intracellular pathogens. In addition, members of the PYHIN family are critical regulators of immune response, apoptosis, cell growth, differentiation, and transcription. In this review, we summarize important characteristics of these innate immune sensors and their roles in several diseases. A better understanding of the role of DNA sensors in the nucleus and cytoplasm will lead to the development of novel therapeutic approaches to control infections and associated diseases.

REFERENCES

  1. Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21(4):317-37. .

  2. Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, Jin T, Latz E, Xiao TS, Fitzgerald KA, Paludan SR, Bowie AG. IFI16 Is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11(11): 997 .

  3. Diner BA, Lum KK, Cristea IM. The emerging role of nuclear viral DNA sensors. J Biol Chem. 2015;290(44): 26412-21. .

  4. Connolly DJ, Bowie AG. The emerging role of human PY-HIN proteins in innate immunity: implications for health and disease. Biochem Pharmacol. 2014;92(3):405-14. .

  5. Xie J, Briggs JA, Briggs RC. MNDA Dimerizes through a complex motif involving an N-terminal basic region. FEBS Lett. 1997;408(2):151-5. .

  6. Johnstone RW, Kershaw MH, Trapani JA. Isotypic variants of the interferon-inducible transcriptional repressor IFI 16 arise through differential mRNA splicing. Biochemistry. 1998;37(34):11924-31 .

  7. Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. AIM2 Activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509. .

  8. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA. AIM2 Recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237): 514 .

  9. Knipe DM. Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity. Virology. 2015;479:153-9. .

  10. Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B. IFI16 Acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-associated herpesvirus infection. Cell Host Microbe. 2011;9(5):363-75 .

  11. Cridland JA, Curley EZ, Wykes MN, Schroder K, Sweet MJ, Roberts TL, Ragan MA, Kassahn KS, Stacey KS. The mammalian PYHIN gene family: phylogeny, evolution and expression. BMC Evol Biol. 2012;12(1):140 .

  12. Khare S, Ratsimandresy RA, de Almeida L, Cuda CM, Rellick SL, Misharin AV, Wallin MC, Gangopadhyay A, Forte E, Gottwein E, Perlman H, Reed JC, Greaves DR, Dorfleutner A, Stehlik C. The PYRIN domain-only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol. 2014;15(4):343 .

  13. Ludlow LE, Johnstone RW, Clarke CJ. The HIN-200 family: more than interferon-inducible genes? Exp Cell Res. 2005;308(1):1-17. .

  14. Johnstone RW, Trapani JA. Transcription and growth regulatory functions of the HIN-200 family of proteins. Mol Cell Biol. 1999;19(9):5833-8. .

  15. Ouchi M, Ouchi T. Role of IFI16 in DNA damage and checkpoint. Front Biosci. 2008;13:236-9. .

  16. Choubey D, Deka R, Ho S. Interferon-inducible IFI16 protein in human cancers and autoimmune diseases. Front Biosci. 2008;1;13:598-608. .

  17. Kis-Toth K, Szanto A, Thai T-H, Tsokos GC. Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response. J Immunol. 2011;187(3):1222-34. .

  18. Marchesan JT, Jiao Y, Moss K, Divaris K, Seaman W, Webster-Cyriaque J, Zhang S, Yu N, Song C, Bencharit S, Teles R, Offenbacher S. Common polymorphisms in IFI16 and AIM2 genes are associated with periodontal disease. J Periodontal. 2017;88(7):663-72 .

  19. Xin H, Pereira-Smith OM, Choubey D. Role of IFI 16 in cellular senescence of human fibroblasts. Oncogene. 2004;23(37):6209. .

  20. Johnstone RW, Wei W, Greenway A, Trapani JA. Functional interaction between p53 and the interferon-inducible nucleoprotein IFI 16. Oncogene. 2000;19(52):6033. .

  21. Aglipay JA, Lee SW, Okada S, Fujiuchi N, Ohtsuka T, Kwak JC, Wang Y, Johnstone RW, Deng C, Qin J, Ouchi T. A member of the Pyrin family, IFI16, is a novel BRCA1-associated protein involved in the p53-mediated apoptosis pathway. Oncogene. 2003;22(55):8931 .

  22. Berry A, Matthews L, Jangani M, Plumb J, Farrow S, Buchan N, Wilson PA, Singh D, Ray DW, Donn RP. Interferon-inducible factor 16 is a novel modulator of gluco-corticoid action. FASEB J. 2010;24(6):1700-13. .

  23. Alimirah F, Chen J, Xin H, Choubey D. Androgen receptor auto-regulates its expression by a negative feedback loop through upregulation of IFI16 protein. FEBS Lett. 2006;580(6):1659-64. .

  24. Song LL, Alimirah F, Panchanathan R, Xin H, Choubey D. Expression of an IFN-inducible cellular senescence gene, IFI16, is up-regulated by p53. Mol Cancer Res. 2008;6(11):1732-41. .

  25. Xin H, Curry J, Johnstone RW, Nickoloff BJ, Choubey D. Role of IFI16, a member of the interferon-inducible p200-protein family, in prostate epithelial cellular senescence. Oncogene. 2003;22(31):4831-40. .

  26. Dawson MJ, Trapani JA. IFI16 Gene encodes a nuclear protein whose expression is induced by interferons in human myeloid leukaemia cell lines. J Cell Biochem. 1995;57(1):39-51. .

  27. Dawson MJ, Trapani JA. The interferon inducible auto-antigen, IFI16: localization to the nucleolus and identification of a DNA-binding domain. Biochem Biophys Res Commun. 1995;214(1):152-62 .

  28. Choubey D, Lengyel P. Interferon action: cytoplasmic and nuclear localization of the interferon-inducible 52-kD protein that is encoded by the Ifi 202 gene from the gene 200 cluster. J Interferon Res. 1993;13(1):43-52 .

  29. Costa S, Borgogna C, Mondini M, De Andrea M, Meroni P, Berti E, Gariglio M, Landolfo S. Redistribution of the nuclear protein IFI16 into the cytoplasm of ultraviolet B-exposed keratinocytes as a mechanism of autoantigen processing. Br J Dermatol. 2011;164(2):282-90 .

  30. Duan X, Ponomareva L, Veeranki S, Panchanathan R, Dickerson E, Choubey D. Differential roles for the interferon-inducible IFI16 and AIM2 innate immune sensors for cytosolic DNA in cellular senescence of human fibroblasts. Mol Cancer Res. 2011;9(5):589-602 .

  31. Cristea IM, Moorman NJ, Terhune SS, Cuevas CD, O'Keefe ES, Rout MP, Chait BT, Shenk T. Human cytomegalovirus pUL83 stimulates activity of the viral immediate-early promoter through its interaction with the cellular IFI16 protein. J Virol. 2010;84(15):7803-14 .

  32. Veeranki S, Choubey D. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol. 2012;49(4):567-71 .

  33. Simental J, Sar M, Lane M, French F, Wilson E. Transcriptional activation and nuclear targeting signals of the human androgen receptor. J Biol Chem. 1991;266(1):510-8 .

  34. Guinez C, Morelle W, Michalski J-C, Lefebvre T. O-Glc-NAc Glycosylation: a signal for the nuclear transport of cytosolic proteins? Int J Biochem Cell Biol. 2005;37(4): 765-74 .

  35. Li T, Diner BA, Chen J, Cristea IM. Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Natl Acad Sci U S A. 2012;109(26):10558-63 .

  36. Okamoto I, Kawano Y, Murakami D, Sasayama T, Araki N, Miki T, Wong AJ, Saya H. Proteolytic release of CD44 intracellular domain and its role in the CD44 signaling pathway. J Cell Biol. 2001;155(5):755-62 .

  37. Lammich S, Okochi M, Takeda M, Kaether C, Capell A, Zimmer A-K, Edbauer D, Walter J, Steiner H, Haass C. Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an AP-like peptide. J Biol Chem. 2002;277(47):44754-9 .

  38. De Falco V, Tamburrino A, Ventre S, Castellone MD, Malek M, Manie SN, Santoro M. CD44 Proteolysis increases CREB phosphorylation and sustains proliferation of thyroid cancer cells. Cancer Res. 2012;72(6):1449-58 .

  39. Schultz K, Grieger C, Li Y, Urbanek P, Ruschel A, Minnich K, Bruder D, Gereke M, Sechi A, Herrlich P. y Secretase dependent release of the CD44 cytoplasmic tail upregulates IFI16 in CD44-/- tumor cells, MEFs and macrophages. PLoS One. 2018;13(12):e0207358 .

  40. Haronikova L, Coufal J, Kejnovska I, Jagelska EB, Fojta M, Dvorakova P, Muller P, Vojtesek B, Brazda V. IFI16 Preferentially binds to DNA with quadruplex structure and enhances DNA quadruplex formation. PLoS One. 2016;11(6):e0157156 .

  41. Jakobsen MR, Bak RO, Andersen A, Berg RK, Jensen SB, Tengchuan J, Laustsen A, Hansen K, Ostergaard L, Fitzgerald KA, Xiao TS, Mikkelsen JG, Mogensen TH, Paludan SR. IFI16 senses DNA forms of the lentiviral replication cycle and controls HIV-1 replication. Proc Natl Acad Sci U S A. 2013;110(48):E4571-80. .

  42. Horan KA, Hansen K, Jakobsen MR, Holm CK, S0by S, Unterholzner L, Thompson M, West JA, Iversen MB, Rasmussen SB, Ellermann-Eriksen S, Kurt-Jones E, Landolfo S, Damania B, Melchjorsen J, Bowie AG, Fitzgerald KA, Paludan SR. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol. 2013;190(5):2311-9 .

  43. Dell'Oste V, Gatti D, Gugliesi F, De Andrea M, Bawadekar M, Cigno IL, Biolatti M, Vallino M, Marschall M, Gariglio M, Landolfo S. Innate nuclear sensor IFI16 translocates into the cytoplasm during the early stage of in vitro human cytomegalovirus infection and is entrapped in the egressing virions during the late stage. J Virol. 2014;88(12):6970-82 .

  44. Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, Jiang Z, Horvath G, Rathinam VA, Johnstone RW, Hornung V, Latz E, Bowie AG, Fitzgerald KA, Xiao TS. Structures of the HIN domain: DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36(4):561-71 .

  45. J0nsson K, Laustsen A, Krapp C, Skipper K, Thavachelvam K, Hotter D, Egedal JH, Kjolby M, Mohammadi P, Prabakaran T, S0rensen LK, Sun C, Jensen SB, Holm CK, Lebbink RJ, Johannsen M, Nyegaard M, Mikkelsen JG, Kirchhoff F, Paludan SR, Jakobsen MR. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nat Commun. 2017;8:14391 .

  46. Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ, Sohn J. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Natl Acad Sci U S A. 2014;111(1):E62-71. .

  47. Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013;3(5):1355-61 .

  48. Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V. cGAS Produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498(7454):380. .

  49. Almine JF, O'Hare CA, Dunphy G, Haga IR, Naik RJ, Atrih A, Connolly DJ, Taylor J, Kelsall IR, Bowie AG, Beard PM, Unterholzner L. IFI16 And cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nat Commun. 2017;8:14392 .

  50. Dunphy G, Flannery SM, Almine JF, Connolly DJ, Paulus C, J0nsson KL, Jakobsen MR, Nevels MM, Bowie AG, Unterholzner L. Non-canonical activation of the DNA sensing adaptor STING by ATM and IFI16 mediates NF-KB signaling after nuclear DNA damage. Mol Cell. 2018;71(5):745-60 .

  51. Veeranki S, Duan X, Panchanathan R, Liu H, Choubey D. IFI16 Protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One. 2011;6(10):e27040 .

  52. Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, Hardy LL, Garceau V, Sweet MJ, Ross IL, Hume DA, Stacey KJ. HIN-200 Proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323(5917):1057-60 .

  53. Yin Q, Sester DP, Tian Y, Hsiao Y-S, Lu A, Cridland JA, Sagulenko V, Thygesen SJ, Choubey D, Hornung V, Walz T, Stacey KJ, Wu H. Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep. 2013;4(2):327-39 .

  54. Thompson MR, Sharma S, Atianand M, Jensen SB, Carpenter S, Knipe DM, Fitzgerald KA, Kurt-Jones EA. Interferon y-inducible protein (IFI) 16 transcriptionally regulates type I interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem. 2014;289(34):23568-81 .

  55. Ding Y, Lee J-F, Lu H, Lee M-H, Yan D-H. Interferon-inducible protein IFIXa1 functions as a negative regulator of HDM2. Mol Cell Biol. 2006;26(5):1979-96. .

  56. Crow MS, Cristea IM. Human antiviral protein IFIX suppresses viral gene expression during herpes simplex virus 1 (HSV-1) infection and is counteracted by virus-induced proteasomal degradation. Mol Cell Proteomics. 2017;16(4 Suppl 1):S200-14 .

  57. Ding Y, Wang L, Su L-K, Frey JA, Shao R, Hunt KK, Yan DH. Antitumor activity of IFIX, a novel interfer-on-inducible HIN-200 gene, in breast cancer. Oncogene. 2004;23(26):4556-66. .

  58. Yamaguchi H, Ding Y, Lee J-F, Zhang M, Pal A, Bornmann W, Yan D-H, Hung M-C. Interferon-inducible protein IF-IXa inhibits cell invasion by upregulating the metastasis suppressor maspin. Mol Carcinog. 2008;47(10):739-48 .

  59. DeYoung KL, Ray ME, Su YA, Anzick SL, Johnstone RW, Trapani JA, Meltzer PS, Trent JM. Cloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene. 1997;15(4):453 .

  60. Choubey D, Duan X, Dickerson E, Ponomareva L, Pan-chanathan R, Shen H, Srivastava R. Interferon-inducible p200-family proteins as novel sensors of cytoplasmic DNAR role in inflammation and autoimmunity. J Interferon Cytokine Res. 2010;30(6):371-80 .

  61. Hornung V, Latz E. Intracellular DNA recognition. Nat Rev Immunol. 2010;10(2):123. .

  62. Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J, Cristea IM. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol. 2015;11(2):787. .

  63. Paull TT, Rogakou EP, Yamazaki V, Kirchgessner CU, Gellert M, Bonner WM. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol. 2000;10(15):886-95. .

  64. Fanis P, Gillemans N, Aghajanirefah A, Pourfarzad F, Demmers J, Esteghamat F, Vadlamudi RK, Grosveld F, Philipsen S, van Dijk TB. Five friends of methylated chromatin target of protein-arginine methyltransfer-ase[Prmt]-1 (Chtop), a complex linking arginine methylation to desumoylation. Mol Cell Proteomics. 2012;11(11): 1263-73. .

  65. Kondo Y, Nagai K, Nakahata S, Saito Y, Ichikawa T, Suekane A, Taki T, Iwakawa R, Enari M, Taniwaki M, Yokota J, Sakoda S, Morishita K. Overexpression of the DNA sensor proteins, absent in melanoma 2 and interfer-on-inducible 16, contributes to tumorigenesis of oral squamous cell carcinoma with p53 inactivation. Cancer Sci. 2012;103(4):782-90. .

  66. Chen I-F, Ou-Yang F, Hung J-Y, Liu J-C, Wang H, Wang S-C, Hou MF, Hortobagyi GN, Hung MC. AIM2 Suppresses human breast cancer cell proliferation in vitro and mammary tumor growth in a mouse model. Mol Cancer Ther. 2006;5(1):1-7. .

  67. Goldberger A, Hnilica L, Casey S, Briggs R. Properties of a nuclear protein marker of human myeloid cell differentiation. J Biol Chem. 1986;261(10):4726-31. .

  68. Xie J, Briggs JA, Olson MO, Sipos K, Briggs RC. Human myeloid cell nuclear differentiation antigen binds specifically to nucleolin. J Cell Biochem. 1995;59(4):529-36. .

  69. Suzuki T, Nakano-Ikegaya M, Yabukami-Okuda H, de Hoon M, Severin J, Saga-Hatano S, Shin JW, Kubosaki A, Simon C, Hasegawa Y, Hayashizaki Y, Suzuki H. Reconstruction of monocyte transcriptional regulatory network accompanies monocytic functions in human fibroblasts. PLoS One. 2012;7(3):e33474. .

  70. Li H, Wang Z-X, Wu J-W. Purification, characterization and docking studies of the HIN domain of human myeloid nuclear differentiation antigen (MNDA). Biotechnol Lett. 2014;36(5):899-905. .

  71. Xie J, Briggs JA, Briggs RC. Human hematopoietic cell specific nuclear protein MNDA interacts with the multi-functional transcription factor YY1 and stimulates YY1 DNA binding. J Cell Biochem. 1998;70(4):489-506. .

  72. Fotouhi-Ardakani N, Kebir DE, Pierre-Charles N, Wang L, Ahern SP, Filep JG, Milot E. Role for myeloid nuclear differentiation antigen in the regulation of neutrophil apoptosis during sepsis. Am J Respir Crit Care Med. 2010;182(3):341-50. .

  73. Eriksson K, Svensson A, Hait AS, Schluter K, Tunback P, Nordstrom I, Padyukov L, Liljeqvist JA, Mogensen TH, Paludan SR. Cutting edge: genetic association between IFI16 single nucleotide polymorphisms and resistance to genital herpes correlates with IFI16 expression levels and HSV-2-induced IFN-P expression. J Immunol. 2017;199(8):2613-7. .

  74. Booiman T, Kootstra NA. Polymorphism in IFI 16 affects CD4+ T-cell counts in HIV-1 infection. Int J Immunogenet. 2014;41(6):518-20. .

  75. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, Himes BE, Levin AM, Mathias RA, Hancock DB, Baurley JW, Eng C, Stern DA, Celedon JC, Rafaels N, Capurso D, Conti DV, Roth LA, Soto-Quiros M, Togias A, Li X, Myers RA, Romieu I, Van Den Berg DJ, Hu D, Hansel NN, Hernandez RD, Israel E, Salam MT, Galanter J, Avila PC, Avila L, Rodriquez-Santana JR, Chapela R, Rodriguez-Cintron W, Diette GB, Adkinson NF, Abel RA, Ross KD, Shi M, Faruque MU, Dunston GM, Watson HR, Mantese VJ, Ezurum SC, Liang L, Ruczinski I, Ford JG, Huntsman S, Chung KF, Vora H, Li X, Calhoun WJ, Castro M, Sienra-Monge JJ, del Rio-Navarro B, Deichmann KA, Heinzmann A, Wenzel SE, Busse WW, Gern JE, Lemanske Jr RF, Beaty TH, Bleecker ER, Raby BA, Meyers DA, London SJ; Mexico City Childhood Asthma Study (MCAAS), Gilliland FD; Children's Health Study (CHS) and HARBORS Study, Burchard EG; Genetics of Asthma in Latino Americans (GALA) Study, Study of Genes-Environment and Admixture in Latino Americans (GALA2) and Study of African Americans, Asthma, Genes & Environments (SAGE), Martinez FD; Childhood Asthma Research and Education (CARE) Network, Weiss ST; Childhood Asthma Management Program (CAMP), Williams LK; Study of Asthma Phenotypes and Pharmacogenomic Interactions by Race-Ethnicity (SAPPHIRE), Barnes KC; Genetic Research on Asthma in African Diaspora (GRAAD) Study, Ober C, Nicolae DL. Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet. 2011; 43(9):887. .

  76. Johnson KE, Chikoti L, Chandran B. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol. 2013;87(9):5005-18. .

  77. Ansari MA, Singh VV, Dutta S, Veettil MV, Dutta D, Chikoti L, Lu J, Everly D, Chandran B. Constitutive interfer-on-inducible protein 16-inflammasome activation during Epstein-Barr virus latency I, II, and III in B and epithelial cells. J Virol. 2013;87(15):8606-23. .

  78. Orzalli MH, Conwell SE, Berrios C, DeCaprio JA, Knipe DM. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proc Natl Acad Sci U S A. 2013;110(47):E4492-501. .

  79. Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B. IFI16 Restricts HSV-1 replication by accumulating on the HSV-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog. 2014;10(11):e1004503. .

  80. Gariano GR, Dell'Oste V, Bronzini M, Gatti D, Luganini A, De Andrea M, Gribaudo G, Gariglio M, Landolfo S. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog. 2012;8(1):e1002498. .

  81. Conrady CD, Zheng M, Fitzgerald KA, Liu C, Carr DJ. Resistance to HSV-1 infection in the epithelium resides with the novel innate sensor, IFI-16. Mucosal Immunol. 2012;5(2):173. .

  82. Goubau D, Rehwinkel J, Reis e Sousa C. PYHIN proteins: Center stage in DNA sensing. Nat Immunol. 2010;11(11):984-6. .

  83. Orzalli MH, DeLuca NA, Knipe DM. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A. 2012;109(44):3008-17. .

  84. Monroe KM, Yang Z, Johnson JR, Geng X, Doitsh G, Krogan NJ, Greene WC. IFI16 DNA sensor is required for death of lymphoid CD4 T cells abortively infected with HIV. Science. 2014;343(6169):428-32 .

  85. Hotter D, Bosso M, J0nsson KL, Krapp C, Sturzel CM, Das A, Littwitz-Salomon E, Berkhout B, Russ A, Wittmann S, Gramberg T, Zheng Y, Martins LJ, Planelles V, Jakobsen MR, Hahn BH, Dittmer U, Sauter D, Kirchhoff F. IFI16 Targets the transcription factor Sp1 to suppress HIV-1 transcription and latency reactivation. Cell Host Microbe. 2019;12;25(6):858-72. .

  86. McLaren PJ, Gawanbacht A, Pyndiah N, Krapp C, Hotter D, Kluge SF, Gotz N, Heilmann J, Mack K, Sauter D, Thompson D, Perreaud J, Rausell A, Munoz M, Ciuffi A, Kirchhoff F, Telenti A. Identification of potential HIV restriction factors by combining evolutionary genomic signatures with functional analyses. Retrovirology. 2015;12(1):41. .

  87. Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Munoz-Arias I, Greene WC. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature. 2014;505(7484):509. .

  88. Roy A, Dutta D, Iqbal J, Pisano G, Gjyshi O, Ansari MA, Kumar B, Chandran B. Nuclear innate immune DNA sensor IFI16 is degraded during lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV): role of IFI16 in maintenance of KSHV latency. J Virol. 2016;90(19):8822-41. .

  89. Pang X, Li X, Mo Z, Huang J, Deng H, Lei Z, Zheng X, Feng Z, Xie D, Gao Z. IFI16 Is involved in HBV-associated acute-on-chronic liver failure inflammation. BMC Gastroenterol. 2018;18(1):61. .

  90. Li T, Chen J, Cristea IM. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe. 2013;14(5):591-9. .

  91. Boutell C, Orr A, Everett RD. PML Residue lysine 160 is required for the degradation of PML induced by herpes simplex virus type 1 regulatory protein ICP0. J Virol. 2003;77(16):8686-94. .

  92. Cuchet-Lourenjo D, Vanni E, Glass M, Orr A, Everett RD. Herpes simplex virus 1 ubiquitin ligase ICP0 interacts with PML isoform I and induces its SUMO-independent degradation. J Virol. 2012;86(20):11209-22. .

  93. Man SM, Karki R, Kanneganti TD. AIM2 Inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 2016;46(2):269-80. .

  94. Huang Y, Ma D, Huang H, Lu Y, Liao Y, Liu L, Liu X, Fang F. Interaction between HCMV pUL83 and human AIM2 disrupts the activation of the AIM2 inflammasome. Virol J. 2017;14(1):34. .

  95. Lugrin J, Martinon F. The AIM 2 inflammasome: Sensor of pathogens and cellular perturbations. Immunol Rev. 2018;281(1):99-114. .

  96. Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol. 2010;11(5):395. .

  97. Maruzuru Y, Ichinohe T, Sato R, Miyake K, Okano T, Suzuki T, Koshiba T, Koyanagi N, Tsuda S, Watanabe M, Arii J, Kato A, Kawaguchi Y. Herpes simplex virus 1 VP22 inhibits AIM2-dependent inflammasome activation to enable efficient viral replication. Cell Host Microbe. 2018;23(2):254-65 .

  98. Saiga H, Kitada S, Shimada Y, Kamiyama N, Okuyama M, Makino M, Yamamoto M, Takeda K. Critical role of AIM2 in Mycobacterium tuberculosis infection. Int Immunol. 2012;24(10):637-44. .

  99. Manzanillo PS, Shiloh MU, Portnoy DA, Cox JS. Mycobacterium tuberculosis activates the DNA-dependent cytosolic surveillance pathway within macrophages. Cell Host Microbe. 2012;11(5):469-80. .

  100. Franco MMSC, Marim FM, Alves-Silva J, Cerqueira D, Rungue M, Tavares IP, Oliveira SC. AIM2 Senses Brucella abortus DNA in dendritic cells to induce IL-1p secretion, pyroptosis and resistance to bacterial infection in mice. Microbes Infect. 2019;21(2):85-93 .

  101. Fukushi M, Higuchi M, Oie M, Tetsuka T, Kasolo F, Ichiyama K, Yamamoto N, Katano H, Sata T, Fujii M. Latency-associated nuclear antigen of Kaposi's sarco-maassociated herpesvirus interacts with human myeloid cell nuclear differentiation antigen induced by interferon a. Virus Genes. 2003;27(3):237-47 .

  102. Riva G, Pecorari G, Biolatti M, Pautasso S, Cigno IL, Garzaro M, Dell'Oste V, Landolfo S. PYHIN Genes as potential biomarkers for prognosis of human papilloma-virus-positive or -negative head and neck squamous cell carcinomas. Mol Biol Rep. 2019;46(3):3333-47 .

  103. Alimirah F, Chen J, Davis FJ, Choubey D. IFI16 In human prostate cancer. Mol Cancer Res. 2007;5(3):251-9. .

  104. Zhang M, Jin C, Yang Y, Wang K, Zhou Y, Zhou Y, Wang R, Li T, Hu R. AIM2 Promotes non-small-cell lung cancer cell growth through inflammasome-dependent pathway. J Cell Physiol. 2019;234(11):20161-173 .

  105. Farshchian M, Nissinen L, Siljamaki E, Riihila P, Piipponen M, Kivisaari A, Kallajoki M, Grenman R, Peltonen J, Peltonen S, Quint KD, Bavinck JNB, Kahari VM. Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget. 2017;8(28):45825 .

  106. Nakamura Y, Nakahata S, Kondo Y, Izumi A, Yamamoto K, Ichikawa T, Tamura T, Noumi K, Yamashita Y, Morishita K. Overexpression of absent in melanoma 2 in oral squamous cell carcinoma contributes to tumor progression. Biochem Biophys Res Commun. 2019;509(1):82-8 .

  107. Ponomareva L, Liu H, Duan X, Dickerson E, Shen H, Panchanathan R, Choubey D. AIM2, An IFN-inducible cytosolic DNA sensor, in the development of benign prostate hyperplasia and prostate cancer. Mol Cancer Res. 2013;11(10):1193-202 .

  108. Zhang Z, Dong X, Yang X, Wan D, Sun L, Gu M, Li M, Zhu Z, Wang J, Shang Z, He S. Expression and clinical significance of absent in melanoma 2 in colorectal cancer. Biomed Pharmacother. 2017;94:843-9 .

  109. Chai D, Shan H, Wang G, Li H, Fang L, Song J, Zhang Q, Bai J, Zheng J. AIM2 is a potential therapeutic target in human renal carcinoma and suppresses its invasion and metastasis via enhancing autophagy induction. Exp Cell Res. 2018;370(2):561-70 .

  110. Pan J, Han L, Guo J, Wang X, Liu D, Tian J, Zhang M, An F. AIM2 Accelerates the atherosclerotic plaque progressions in ApoE-/- mice. Biochem Biophys Res Commun. 2018;498(3):487-94 .

  111. Furrer A, Hottiger MO, Valaperti A. Absent in Melanoma 2 (AIM2) limits pro-inflammatory cytokine transcription in cardiomyocytes by inhibiting STAT1 phosphorylation. Mol Immunol. 2016;74:47-58. .

  112. Man SM, Zhu Q, Zhu L, Liu Z, Karki R, Malik A, Sharma D, Li L, Malireddi RK, Gurung P, Neale G, Olsen SR, Carter RA, McGoldrick DJ, Wu G, Finkelstein D, Vogel P, Gilbertson RJ, Kanneganti TD. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell. 2015;162(1):45-58. .

  113. Metcalf RA, Monabati A, Vyas M, Roncador G, Gualco G, Bacchi CE, Younes SF, Natkunam Y, Freud AG. Myeloid cell nuclear differentiation antigen is expressed in a subset of marginal zone lymphomas and is useful in the differential diagnosis with follicular lymphoma. Hum Pathol. 2014;45(8):1730-6. .

  114. McClintock-Treep SA, Briggs RC, Shults KE, Flye-Blake-more LA, Mosse CA, Jagasia MH, Shinar AA, Dupont WD, Stelzer GT, Head DR. Quantitative assessment of myeloid nuclear differentiation antigen distinguishes myelodysplastic syndrome from normal bone marrow. Am J Clin Pathol. 2011;135(3):380-5. .

  115. Caneparo V, Cena T, De Andrea M, Dell'Oste V, Stratta P, Quaglia M, Tincani A, Andreoli L, Ceffa S, Taraborelli M, Magnani C, Landolfo S, Gariglio M. Anti-IFI16 antibodies and their relation to disease characteristics in systemic lupus erythematosus. Lupus. 2013;22(6):607-13. .

  116. Gugliesi F, Bawadekar M, De Andrea M, Dell'Oste V, Caneparo V, Tincani A, Gariglio M, Landolfo S. Nuclear DNA sensor IFI16 as circulating protein in autoimmune diseases is a signal of damage that impairs endothelial cells through high-affinity membrane binding. PLoS One. 2013;8(5):e63045. .

  117. Dombrowski Y, Peric M, Koglin S, Kammerbauer C, GoB C, Anz D, Simanski M, Glaser R, Harder J, Hornung V, Gallo RL, Ruzicka T, Besch R, Schauber J. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011;3(82):82ra38. .

  118. Dihlmann S, Erhart P, Mehrabi A, Nickkholgh A, Lasitschka F, Bockler D, Hakimi M. Increased expression and activation of absent in melanoma 2 inflammasome components in lymphocytic infiltrates of abdominal aortic aneurysms. Mol Med. 2014;20(1):230-7. .

  119. Javierre BM, Fernandez AF, Richter J, Al-Shahrour F, Martin-Subero JI, Rodriguez-Ubreva J, Berdasco M, Fraga MF, O'Hanlon TP, Rider LG, Jacinto FV, Lopez-Longo FJ, Dopazo J, Forn M, Peinado MA, Carreno L, Sawalha AH, Harley JB, Siebert R, Esteller M, Miller FW, Ballestar E. Changes in the pattern of DNA methyl-ation associate with twin discordance in systemic lupus erythematosus. Genome Res. 2010;20(2):170-9. .

  120. Choubey D, Panchanathan R. Interferon (IFN)-inducible Absent in Melanoma 2 proteins in the negative regulation of the type I IFN response: Implications for lupus nephritis. Cytokine. 2019;pii:S1043-4666(19)30086-9. .

  121. Cho SJ, Hong KS, Jeong JH, Lee M, Choi AM, Stout-Delgado HW, Moon JS. Drosha-dependent AIM2 inflammasome activation contributes to lung inflammation during idiopathic pulmonary fibrosis. Cells. 2019;8(8):938 .

  122. Stadion M, Schwerbel K, Graja A, Baumeier C, Rodiger M, Jonas W, Wolfrum C, Staiger H, Fritsche A, Haring HU, Kloting N, Bluher M, Fischer-Posovszky P, Schulz TJ, Joost HG, Vogel H, Schurmann A. Increased Ifi202b/IFI16 expression stimulates adipogenesis in mice and humans. Diabetologia. 2018;61(5):1167-79. .

  123. Catano Canizales Y, Uresti Rivera EE, Garcia Jacobo RE, Portales Perez DP, Yadira B, Rodriguez Rivera JG, Amaro RG, Enciso Moreno JA, Garcia Hernandez MH. Increased levels of AIM2 and circulating mitochondrial DNA in type 2 diabetes. Iran J Immunol. 2018;15(2):142-55. .

  124. Kaminski JJ, Schattgen SA, Tzeng T-C, Bode C, Klinman DM, Fitzgerald KA. Synthetic oligodeoxynucleotides containing suppressive TTAGGG motifs inhibit AIM2 inflammasome activation. J Immunol. 2013;191(7):3876-83. .

  125. Lysakova-Devine T, Keogh B, Harrington B, Nagpal K, Halle A, Golenbock DT, Monie T, Bowie AG. Viral inhibitory peptide of TLR4, a peptide derived from vaccinia protein A46, specifically inhibits TLR4 by directly targeting MyD88 adaptor-like and TRIF-related adaptor molecule. J Immunol. 2010;185(7):4261-71. .