图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
医药载体系统评论综述
影响因子: 2.9 5年影响因子: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN 打印: 0743-4863
ISSN 在线: 2162-660X

医药载体系统评论综述

DOI: 10.1615/CritRevTherDrugCarrierSyst.2014010920
pages 1-59

Nanostructured Platforms for the Sustained and Local Delivery of Antibiotics in the Treatment of Osteomyelitis

Vuk Uskokovic
Advanced Materials and Nanobiotechnology Laboratory, Richard and Loan Hill Department of Bioengineering, College of Medicine, University of Illinois at Chicago, 851 South Morgan St, #205 Chicago, Illinois, 60607-7052

ABSTRACT

This article provides a critical view of the current state of the development of nanoparticulate and other solid-state carriers for the local delivery of antibiotics in the treatment of osteomyelitis. Mentioned are the downsides of traditional means for treating bone infection, which involve systemic administration of antibiotics and surgical debridement, along with the rather imperfect local delivery options currently available in the clinic. Envisaged are more sophisticated carriers for the local and sustained delivery of antimicrobials, including bioresorbable polymeric, collagenous, liquid crystalline, and bioglass- and nanotube-based carriers, as well as those composed of calcium phosphate, the mineral component of bone and teeth. A special emphasis is placed on composite multifunctional antibiotic carriers of a nanoparticulate nature and on their ability to induce osteogenesis of hard tissues demineralized due to disease. An ideal carrier of this type would prevent the long-term, repetitive, and systemic administration of antibiotics and either minimize or completely eliminate the need for surgical debridement of necrotic tissue. Potential problems faced by even hypothetically "perfect" antibiotic delivery vehicles are mentioned too, including (i) intracellular bacterial colonies involved in recurrent, chronic osteomyelitis; (ii) the need for mechanical and release properties to be adjusted to the area of surgical placement; (iii) different environments in which in vitro and in vivo testings are carried out; (iv) unpredictable synergies between drug delivery system components; and (v) experimental sensitivity issues entailing the increasing subtlety of the design of nanoplatforms for the controlled delivery of therapeutics.


Articles with similar content:

Rapid Clearance of Bacteria and Their Toxins: Development of Therapeutic Proteins
Critical Reviews™ in Immunology, Vol.27, 2007, issue 3
Goutam Gupta, Meghan Kunkel, Abhaya M. Dandekar, Momchilo Vuyisich, George E. Bruening, Edwin Civerolo, Gnana Gnanakaran, John J. Marchalonis
Lipid Nanocarriers: Influence of Lipids on Product Development and Pharmacokinetics
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.28, 2011, issue 4
Lav Keshri, Mayank Shah, Kamla Pathak
Colloidal Carriers: A Rising Tool for Therapy of Tuberculosis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 4
Suresh P. Vyas, Manish K. Gupta, Swati Gupta, Pankaj Kumar
Biopolymers as Transdermal Drug Delivery Systems in Dermatology Therapy
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.27, 2010, issue 2
M.A. Navya, K. H. Basavaraj, Siddaramaiah, George Johnsy, R. Rashmi
Current Nanotechnological Strategies for Treating Glaucoma
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 5
Goutam Rath, Tarun Garg, Amit Kumar Goyal, Gagandeep Goyal