图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
医药载体系统评论综述
影响因子: 2.9 5年影响因子: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN 打印: 0743-4863
ISSN 在线: 2162-660X

医药载体系统评论综述

DOI: 10.1615/CritRevTherDrugCarrierSyst.v28.i3.10
pages 203-253

Water-Structuring Technology with the Molecular Chaperone Proteins: Indicated Application of the α-Crystallin Domains and Imidazole-Containing Peptidomimetics in Cosmetic Skin Care Systems or Dermatological Therapeutic Drug Carrier Formulations

Mark A. Babizhayev
Innovative Vision Products, Inc., USA; and Moscow Helmholtz Research Institute for Eye Diseases, Moscow, Russian Federation
Dr. Babizhayev has over 15 international Patents to his name and over 100 publications issued
Gennady M. Nikolayev
Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
Juliana G. Nikolayeva
Department of Biophysics, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
Yegor E. Yegorov
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation

ABSTRACT

Changes in structural proteins and hydration during aging are responsible for altered skin morphologic and mechanical properties manifested as wrinkling, sagging, loss of elasticity, and apparent dryness. Impairment in protein hydration may add to the ultrastructural, mechanical, and biochemical changes in structural proteins in the aged skin. At Innovative Vision Products, Inc., we have pioneered a molecular chaperone protein-activated therapeutic or cosmetic platform to enable simultaneous analysis of water-binding and structuring characteristics for biology-related or skin aging and skin disease-related pathways. This cutting-edge technology has changed the hydration of proteins in photoaged skin which so that they are more compact and interact with water to limited degree. The mechanisms of skin diseases, aging, and cellular and signaling pathways mediated by targeting with molecular chaperone protein(s) are considered. Skin lesions that are growing, spreading, or pigmented, and those that occur on exposed areas of skin are likely to be treated by these emerging pharmacological chaperones that could have cosmetic or dermatological benefits. Examples of such chaperones are anti-/trans-glycation-imidazole−containing peptidomimetic(s) (natural L-carnosine derivatives and mimetics) combined with the molecular chaperone protein α-crystallin derived from a natural source, brine shrimp (Artemia franciscana) cysts, or with recombinant human αA-crystallin. This patented biotechnology represents an efficient tool with which to mitigate the consequences of free radical−induced skin damage. The article is organized to provide in one place all of the relevant technical information, such as high-performance nuclear magnetic resonance and electron spin resonance application tools, and to describe the entire process from sample preparation to data analysis, which is moving from biological studies to biotechnology batches of the product. The proposed biotechnology results in a superior therapeutic treatment using the studied skin-rejuvenating, water-structuring, visible smoothing, and revitalizing beauty-performance agents to meet current challenges in skin care.