图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
医药载体系统评论综述
影响因子: 2.9 5年影响因子: 3.72 SJR: 0.736 SNIP: 0.818 CiteScore™: 4.6

ISSN 打印: 0743-4863
ISSN 在线: 2162-660X

医药载体系统评论综述

DOI: 10.1615/CritRevTherDrugCarrierSyst.v17.i5.10
41 pages

Drug Targeting by Surface Cationization

Sigal Blau
The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy, P.O. Box 12065, Jerusalem 91120, Israel
Tareq Taha Jubeh
The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy, P.O. Box 12065, Jerusalem 91120, Israel
Susan Moody Haupt
The Hebrew University of Jerusalem, Faculty of Medicine, School of Pharmacy, P.O. Box 12065, Jerusalem, 91120, Israel
Abraham Rubinstein
Chairman, Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine The Adolph Weinberger Building The Hebrew University, P.O. Box 12065 Jerusalem 91120, Israel

ABSTRACT

Cationization of drug products and carriers involves a direct modification or attachment of conveying or accompanying components, either of which cause a charge modification. Cationization of macromolecules such as proteins and nucleotides and paniculate drug carriers generally enhances their cellular uptake by endocytosis. The most common use of cationization today is in gene delivery. This is undertaken by either employing cationic polymers or entraping nucleotides in cationic carriers such as cationic liposomes. Cationized delivery systems are also used to overcome biological barriers and are suggested for drug targeting, in a nonspecific manner, to a variety of body organs, including brain, eyes, nose, and inflamed intestinal epithelium. Protein cationization is also suggested both for tumor immunotherapy and as a diagnostic tool in cancer therapy. Cationization has proven itself to be a straightforward tool for targeting to cells, tissues, and selected organs. This article reviews die extensive range of applications of cationization for improving drug and gene delivery and summarizes major technologies employed for that purpose.


Articles with similar content:

Engineered PLGA Nanoparticles: An Emerging Delivery Tool in Cancer Therapeutics
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.28, 2011, issue 1
Amit K. Jain, Manasmita Das, Nitin K. Swarnakar, Sanyog Jain
Peptide and Protein Delivery Using New Drug Delivery Systems
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 4
Ashish Jain, Satish Shilpi, Pooja Hurkat, Aviral Jain, Arvind Gulbake, Sanjay Kumar Jain
Therapeutic Opportunities in Colon-Specific Drug-Delivery Systems
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 2
Avani Amin, Mayur M. Patel, Tejal Shah
Colloidosomes: An Emerging Vesicular System in Drug Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.24, 2007, issue 4
Yashwant Gupta, Satish Shilpi, Anekant Jain, Sanjay Kumar Jain
Structuring Polymers for Delivery of DNA-Based Therapeutics: Updated Insights
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.29, 2012, issue 6
Suresh P. Vyas, Shailja Tiwari, Madhu Gupta