图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
医药载体系统评论综述
影响因子: 2.9 5年影响因子: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN 打印: 0743-4863
ISSN 在线: 2162-660X

医药载体系统评论综述

DOI: 10.1615/CritRevTherDrugCarrierSyst.v24.i3.10
pages 203-255

Reviewing Biophysical and Cell Biological Methodologies in Cell-Penetrating Peptide (CPP) Research

Michael E. Herbig
Drug Formulation and Delivery Group, Department of Chemistry and Applied BioSciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
Kathrin M. Weller
Drug Formulation and Delivery Group, Department of Chemistry and Applied BioSciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
Hans P. Merkle
Drug Formulation and Delivery Group, Department of Chemistry and Applied BioSciences, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland

ABSTRACT

The discovery of cell-penetrating peptides (CPPs), which have the ability to translocate across the plasma membranes of mammalian cells, has led to widespread optimism for delivery of problematic therapeutic cargoes to cells. These cargoes include peptide, protein, and nucleic acid biopharmaceuticals and even nano-sized vectors such as liposomes and nanoparticles. Research on CPPs includes biophysical studies of membrane models to investigate fundamental principles of CPP-lipid membrane interactions as well as cell studies focusing on the efficiency of uptake, mechanisms of translocation, and toxicity. However, both lines of research have suffered from misinterpretation as well as premature extrapolations. In this review, we provide a critical evaluation of the potential and limitations of selected biophysical methodologies such as fluorescence spectroscopy, circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy, atomic-force microscopy (AFM), and non-spectroscopic methods. We include a discussion of the most important bilayer membrane models in CPP research. We then evaluate important cell biological methodologies, in particular confocal laser scanning microscopy (CLSM) and fluorescence-associated cell sorting (FACS) in combination with various techniques to distinguish between translocated and non-translocated CPPs. Moreover, we discuss the diverse methodologies for tracing the pathways of CPP translocation and their routes of intracellular trafficking.


Articles with similar content:

Cytogenetic, Molecular, and Translational Applications in Pancreatic Ductal Adenocarcinoma: Current Evidence and Future Concepts
Critical Reviews™ in Oncogenesis, Vol.24, 2019, issue 2
Rama Rao Malla, Seema Kumari
Cracking the Junction: Update on the Progress of Gastrointestinal Absorption Enhancement in the Delivery of Poorly Absorbed Drugs
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.25, 2008, issue 2
David J. Brayden, Siobhan McClean, Sam Maher, Linda Feighery
Quantum Dots and their Potential Role in Cancer Theranostics
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 6
S. K. Tripathi, Gurvir Kaur, Bhupinder Singh, Rajneet Kaur Khurana, Sonia Kapoor
Tiny Technology Proves Big: A Challenge at Engineering, Medicine and Pharmaceutical Sciences Interface
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.31, 2014, issue 1
Aswini K. Mohapatra, Anjan K. Mahapatra, P. N. Murthy, Supriya Samoju
Recent Advances in Nanoparticle-Based Targeted Drug-Delivery Systems Against Cancer and Role of Tumor Microenvironment
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 4
Usman Ali Ashfaq, Muhammad Zubair Yousaf, Erum Yasmeen, Muhammad Riaz