图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
医药载体系统评论综述
影响因子: 2.9 5年影响因子: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN 打印: 0743-4863
ISSN 在线: 2162-660X

医药载体系统评论综述

DOI: 10.1615/CritRevTherDrugCarrierSyst.2016014850
pages 107-158

Chitosan Nanoparticles Prepared by Ionotropic Gelation: An Overview of Recent Advances

Kashappa Goud Desai
Biopharmaceutical Product Sciences, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, PA 19406

ABSTRACT

The objective of this review is to summarize recent advances in chitosan nanoparticles prepared by ionotropic gelation. Significant progress has occurred in this area since the method was first reported. The gelation technique has been improved through a number of creative methodological modifications. Ionotropic gelation via electrospraying and spinning disc processing produces nanoparticles with a more uniform size distribution. Large-scale manufacturing of the nanoparticles can be achieved with the latter approach. Hydrophobic and hydrophilic drugs can be simultaneously encapsulated with high efficiency by emulsification followed by ionic gelation. The turbulent mixing approach facilitates nanoparticle formation at a relatively high polymer concentration (5 mg/mL). The technique can be easily tuned to achieve the desired polymer/surface modifications (e.g., blending, coating, and surface conjugation). Using factorial-design-based approaches, optimal conditions for nanoparticle formation can be determined with a minimum number of experiments. New insights have been gained into the mechanism of chitosan−tripolyphosphate nanoparticle formation. Chitosan nanoparticles prepared by ionotropic gelation tend to aggregate/agglomerate in unfavorable environments. Factors influencing this phenomenon and strategies that can be adopted to minimize the instability are discussed. Ionically cross-linked nanoparticles based on native chitosan and modified chitosan have shown excellent efficacy for controlled and targeted drug-delivery applications.


Articles with similar content:

Emerging Potential of Nanosuspension-Enabled Drug Delivery: An Overview
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.32, 2015, issue 6
Vivek Ranjan Sinha, Silki
PLGA Nanoparticles in Drug Delivery: The State of the Art
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.21, 2004, issue 5
Sarita Hariharan, Indu Bala, M. N. V. Ravi Kumar
Microsponges: A Pioneering Tool for Biomedical Applications
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 1
Amit Verma, Ankit Jain, Pooja Hurkat, Amrita Kumari, Sanjay Kumar Jain
Liposome-Based Nanomedicine Therapeutics for Rheumatoid Arthritis
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.34, 2017, issue 4
Richard T. Addo, Vikas Kumar, Ruhi Ubale, Firoz Anwar, Mahfoozur Rahman, Sarwar Beg, Sohail Akhter, Raisuddin Ali
Shielding Therapeutic Drug Carriers from the Mononuclear Phagocyte System: A Review
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.33, 2016, issue 6
Magharla Dasaratha Dhanaraju, Nandhakumar Sathyamoorthy