图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
医药载体系统评论综述
影响因子: 2.9 5年影响因子: 3.72 SJR: 0.736 SNIP: 0.551 CiteScore™: 2.43

ISSN 打印: 0743-4863
ISSN 在线: 2162-660X

医药载体系统评论综述

DOI: 10.1615/CritRevTherDrugCarrierSyst.2018021833
pages 219-238

Polymeric Micelles for the Treatment of Rheumatoid Arthritis

Linsen Yun
Department of Physical Education, Luoyang Normal University, Luoyang, HeNan PR China
Hongtao Shang
Department of Track and Field, School of Sports Sciences (Main Campus), Zhengzhou University, Zhengzhou, HeNan PR China
Huan Gu
Department of Biomedical and Chemical Engineering and Syracuse Biomaterials Institute, Syracuse University, Syracuse, NY
Nan Zhang
Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, HeNan PR China

ABSTRACT

Rheumatoid arthritis (RA) affects around 1% of the world's population and places heavy burdens on patients and society. RA pathogenesis has been studied for centuries, and findings suggest that it is activated by varied factors such as infection, genetic activation, and environmental changes, and travels differential pathways in patients, which increases the difficulty of treatment. There is currently no cure for RA. Current treatments inhibit inflammation, protect joints, and suppress immune cells like macrophages and T-lymphocytes. However, these therapies usually have issues of ineffectiveness, drug resistance, and many side effects. The reason is that therapies like methotrexate (MTX), dexamethasone (Dex), and cyclosporine A (CsA) are very lipophilic and have broad distribution in vivo. Micelles are ideal carriers to increase the solubility, bioavailability, half-life, and targeting of these hydrophobic drugs, and thus can be used for RA treatment. In the past decade, micelle-based therapies have become an attractive new strategy for RA treatment. This review summarizes the merits of micelles for RA, the therapeutic targets for RA, and studies that show the recent progress of developed micelles for RA. We compare the composition, performance, potential merits, and limitations of current therapies, and discusses the future directions of advanced and smart micelles for RA.

REFERENCES

  1. Quan L, Zhang Y, Crielaard BJ, Dusad A, Lele SM, Rijcken CJF, Metselaar JM, Kostkova H, Etrych T, Ulbrich K, Kiessling F, Mikuls TR, Hennink WE, Storm G, Lammers T, Wang D. , Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano. 2014;8(1):458–66.

  2. Li C, Li H, Wang Q, Zhou M, Li M, Gong T, Zhang Z, Sun X. , pH-sensitive polymeric micelles for targeted delivery to inflamed joints. J Controlled Release. 2017;246:133–41.

  3. Luhder F, Reichardt HM. , Novel drug delivery systems tailored for improved administration of glucocorticoids. Int J Mol Sci. 2017;18(9):1836–54.

  4. Bader H, Ringsdorf H, Schmidt B. , Watersoluble polymers in medicine. Die Angewandte Makromolekulare Chemie. 1984;123(1):457–85.

  5. Zhang N, Wardwell PR, Bader RA. , Polysaccharide-based micelles for drug delivery. Pharmaceutics. 2013;5(2):329–52.

  6. Maity B, Chatterjee A, Ahmed SA, Seth D. , Interaction of the nonsteroidal anti-inflammatory drug indomethacin with micelles and its release. J Phys Chem B. 2015;119(9):3776–85.

  7. Yokoyama M. , Polymeric micelles as drug carriers: their lights and shadows. J Drug Targeting. 2014;22(7):576–83.

  8. Reddy BP, Yadav HK, Nagesha DK, Raizaday A, Karim A. , Polymeric micelles as novel carriers for poorly soluble drugs—a review. J Nanosci Nanotechnol. 2015;15(6):4009–18.

  9. Kore G, Kolate A, Nej A, Misra A. , Polymeric micelles as multifunctional pharmaceutical carriers. J Nanosci Nanotechnol. 2014;14(1):288–307.

  10. Bader RA, Silvers AL, Zhang N. , Polysialic acid-based micelles for encapsulation of hydrophobic drugs. Biomacromol. 2011;12(2):314–20.

  11. Allijn IE, Schiffelers RM, Storm G. , Comparison of pharmaceutical nanoformulations for curcumin: enhancement of aqueous solubility and carrier retention. Int J Pharma. 2016;506(1-2):407–13.

  12. Wang DA, Narang AS, Kotb M, Gaber AO, Miller DD, Kim SW, Mahato RI. , Novel branched poly(ethylenimine)-cholesterol water-soluble lipopolymers for gene delivery. Biomacromol. 2002;3(6):1197–207.

  13. Brunot C, Ponsonnet L, Lagneau C, Farge P, Picart C, Grosgogeat B. , Cytotoxicity of polyethyleneimine (PEI), precursor base layer of polyelectrolyte multilayer films. Biomat. 2007;28(4):632–40.

  14. Grandinetti G, Ingle NP, Reineke TM. , Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: implications for a mechanism of cytotoxicity. Mol Pharm. 2011;8(5):1709–19.

  15. Crielaard BJ, Rijcken CJ, Quan L, van der Wal S, Altintas I, van der Pot M, Kruijtzer JA, Liskamp RM, Schiffelers RM, van Nostrum CF, Hennink WE, Wang D, Lammers T, Storm G. , Glucocorticoid-loaded core-cross-linked polymeric micelles with tailorable release kinetics for targeted therapy of rheumatoid arthritis. Angewandte Chemie. 2012;51(29):7254–8.

  16. Wu H, Wang K, Wang H, Chen F, Huang W, Chen Y, Chen J, Tao J, Wen X, Xiong S. , Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy. Colloid Surf, B. 2017;149:97–104.

  17. Kanazawa T, Endo T, Arima N, Ibaraki H, Takashima Y, Seta Y, Systemic delivery of small interfering RNA targeting nuclear factor kappa B in mice with collagen-induced arthritis using arginine-histidine-cysteine based oligopeptide-modified polymer nanomicelles. Int J Pharma. 2016;515(1-2):315–23.

  18. Wang Q, Jiang H, Li Y, Chen W, Li H, Peng K, Zhang Z, Sun X. , Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy. Biomat. 2017;122:10–22.

  19. Zhang JX, Yan MQ, Li XH, Qiu LY, Li XD, Li XJ, Jin Y, Zhu KJ. , Local delivery of indomethacin to arthritis-bearing rats through polymeric micelles based on amphiphilic polyphosphazenes. Pharm Res. 2007;24(10):1944–53.

  20. Bachar M, Mandelbaum A, Portnaya I, Perlstein H, Even-Chen S, Barenholz Y, Danino D. , Development and characterization of a novel drug nanocarrier for oral delivery, based on self-assembled beta-casein micelles. J Controlled Release. 2012;160(2):164–71.

  21. Wilson DR, Zhang N, Silvers AL, Forstner MB, Bader RA. , Synthesis and evaluation of cyclosporine A-loaded polysialic acid-polycaprolactone micelles for rheumatoid arthritis. European J Pharma Sci. 2014;51:146–56.

  22. Koo OM, Rubinstein I, Onyuksel H. , Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28(4):776–87.

  23. Koo OM, Rubinstein I, Onyuksel H. , Camptothecin in sterically stabilized phospholipid micelles: a novel nanomedicine. Nanomed. 2005;1(1):77–84.

  24. Sethi V, Rubinstein I, Kuzmis A, Kastrissios H, Artwohl J, Onyuksel H. , Novel, biocompatible, and disease modifying VIP nanomedicine for rheumatoid arthritis. Mol Pharm. 2013;10(2):728–38.

  25. Lu Y, Parker N, Kleindl PJ, Cross VA, Wollak K, Westrick E, Stinnette TW, Gehrke MA, Wang K, Santhapuram HK, You F, Hahn SJ, Vaughn JF, Klein PJ, Vlahov IR, Low PS, Leamon CP. , Antiinflammatory activity of a novel folic acid targeted conjugate of the mTOR inhibitor everolimus. Mol Med. 2015;21:584–96.

  26. Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. , Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Controlled Release. 2016;230:64–72.

  27. Thambi T, Son S, Lee DS, Park JH. , Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater. 2016;29:261–70.

  28. Mohammadi M, Li Y, Abebe DG, Xie Y, Kandil R, Kraus T, Gomez-Lopez N, Fujiwara T, Merkel OM. , Folate receptor targeted three-layered micelles and hydrogels for gene delivery to activated macrophages. J Controlled Release. 2016;244(Pt B):269–79.

  29. Feldmann M, Brennan FM, Maini RN. , Rheumatoid arthritis. Cell. 1996;85(3):307–10.

  30. Lee DM, Weinblatt ME. , Rheumatoid arthritis. Lancet. 2001;358(9285):903–11.

  31. Anderson ST. , Mortality in rheumatoid arthritis: do age and gender make a difference? Semin Arthritis Rheum. 1996;25(5):291–6.

  32. Abolmaali SS, Tamaddon AM, Dinarvand R. , A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis. Cancer Chemother Pharmacol. 2013;71(5):1115–30.

  33. Yazici Y. , Treatment of rheumatoid arthritis: we are getting there. Lancet. 2009;374(9685):178–80.

  34. Cheng T, Liu J, Ren J, Huang F, Ou H, Ding Y, Zhang Y, Ma R, An Y, Liu J, Shi L. , green tea catechin-based complex micelles combined with doxorubicin to overcome cardiotoxicity and multidrug resistance. Theranostics. 2016;6(9):1277–92.

  35. Li J, Xu R, Lu X, He J, Jin S. , A simple reduction-sensitive micelle co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance. Int J Nanomed. 2017;12:8043–56.

  36. Neumann E, Lefèvre S, Zimmermann B, Gay S, Müller-Ladner U. , Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med. 2010;16(10):458–68.

  37. Szekanecz Z, Besenyei T, Paragh G, Koch AE. , Angiogenesis in rheumatoid arthritis. Autoimmunity. 2009;42(7):563–73.

  38. Szekanecz Z, Koch AE. , Angiogenesis and its targeting in rheumatoid arthritis. Vasc Pharmacol. 2009;51(1):1–7.

  39. Gal I, Bajnok E, Szanto S, Sarraj B, Glant TT, Mikecz K. , Visualization and in situ analysis of leukocyte trafficking into the ankle joint in a systemic murine model of rheumatoid arthritis. Semin Arthritis Rheum. 2005;52(10):3269–78.

  40. Yuan F, Quan LD, Cui L, Goldring SR, Wang D. , Development of macromolecular prodrug for rheumatoid arthritis. Adv Drug Deliv Rev. 2012;64(12):1205–19.

  41. Beauchesne PR, Chung NS, Wasan KM. , Cyclosporine A: a review of current oral and intravenous delivery systems. Drug DevInd Pharm. 2007;33(3):211–20.

  42. Shin JM, Kim SH, Thambi T, You DG, Jeon J, Lee JO, Chung BY, Jo DG, Park JH. , A hyaluronic acid-methotrexate conjugate for targeted therapy of rheumatoid arthritis. Chem Commun. 2014;50(57):7632–5.

  43. Xu XL, Li WS, Wang XJ, Du YL, Kang XQ, Hu JB, Li SJ, Ying XY, You J, Du YZ. , Endogenous sialic acid-engineered micelles: a multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis. Nanoscale. 2018;10(6):2923–35.

  44. Ghosh S, Karin M. , Missing pieces in the NF-kappaB puzzle. Cell. 2002;109(Suppl):S81–96.

  45. Miagkov AV, Kovalenko DV, Brown CE, Didsbury JR, Cogswell JP, Stimpson SA, Baldwin AS, Makarov SS. , NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc Natl Acad Sci U S A. 1998;95(23):13859–64.

  46. Noort AR, Tak PP, Tas SW. , Non-canonical NF-kappaB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther. 2015;17:15.

  47. Noort AR, van Zoest KP, Weijers EM, Koolwijk P, Maracle CX, Novack DV, Siemerink MJ, Schlingemann RO, Tak PP, Tas SW. , NF-kappaB-inducing kinase is a key regulator of inflammation-induced and tumour-associated angiogenesis. J Pathol. 2014;234(3):375–85.

  48. Sehnert B, Burkhardt H, Wessels JT, Schroder A, May MJ, Vestweber D, Zwerina J, Warnatz K, Nimmerjahn F, Schett G, Dubel S, Voll RE., NF-kappaB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-kappaB in immune-mediated diseases. Proc Natl Acad Sci U S A. 2013;110(41):16556–61.

  49. Haddad JJ, Abdel-Karim NE. , NF-kappaB cellular and molecular regulatory mechanisms and pathways: therapeutic pattern or pseudoregulation? Cell Immunol. 2011;271(1):5–14.

  50. Cabral H, Kataoka K. , Progress of drug-loaded polymeric micelles into clinical studies. J Controlled Release. 2014;190:465–76.

  51. Wang Q, Sun X. , Recent advances in nanomedicines for the treatment of rheumatoid arthritis. Biomat Sci. 2017;5(8):1407–20.

  52. Zhao G, Zhang H. , Notch-1 siRNA and methotrexate towards a multifunctional approach in rhematoid arthritis management: a nanomedicine approach. Pharm Res. 2018;35(6):123.

  53. New R, Bansal GS, Dryjska M, Bogus M, Green P, Feldmann M, Brennan F. , Design and optimisation of bioactive cyclic peptides: generation of a down-regulator of TNF secretion. Molecules. 2014;19(12):21529–40.


Articles with similar content:

Polymeric Immunonanoparticles Mediated Cancer Therapy: Versatile Nanocarriers for Cell-Specific Cargo Delivery
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.35, 2018, issue 1
Niyati S. Acharya, Namdev L. Dhas, Ritu R. Kudarha, Sanjeev R. Acharya
Current Developments in Therapeutic Drug Targeting for the Management of Rheumatoid Arthritis: An Emerging Paradigm
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.36, 2019, issue 6
T. M. Pramod Kumar, Madhugiri Prakash Venkatesh, Deeksha R. Pai
Nanomedicines for Treatment of Viral Diseases
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.30, 2013, issue 1
Medha Joshi, Vandana B. Patravale, Rujuta Mehendale
Cancer Chemotherapy With Lipid-Based Nanocarriers
Critical Reviews™ in Therapeutic Drug Carrier Systems, Vol.27, 2010, issue 5
Na Zhang, Donghua Liu
Oral Insulin: Current Status, Challenges, and Future Perspectives
Journal of Environmental Pathology, Toxicology and Oncology, Vol.36, 2017, issue 4
Gaurav Gupta, Yap Yenese, Jestin Chellian, Chew Chian Wei, Dinesh Kumar Chellappan