图书馆订阅: Guest
医药载体系统评论综述

每年出版 6 

ISSN 打印: 0743-4863

ISSN 在线: 2162-660X

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 2.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 3.6 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.8 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00023 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.39 SJR: 0.42 SNIP: 0.89 CiteScore™:: 5.5 H-Index: 79

Indexed in

Role of In Vitro Models for Development of Ophthalmic Delivery Systems

卷 38, 册 3, 2021, pp. 1-31
DOI: 10.1615/CritRevTherDrugCarrierSyst.2021035222
Get accessGet access

摘要

There is emergent need for in vitro models which are physiologically correct, easy to reproduce, and mimic characteristic functionalities of desired tissue, organ, or diseases state for ophthalmic drug screening, as well as disease modeling. To date, a variety of in vitro models have been developed for the applications ranging from 2D cell culture-based monolayers, multilayer, or co-culture models, to 3-dimensional (3D) organoids, 3D printed and organ on chip systems. Each model has its own pros and cons. While simple models are easier to create, and faster to reproduce, they lack recapitulation of the complex framework, functionalities, and properties of tissues or their subunits. Recent advancements in technologies and integration with tissue engineering and involvement of microfluidic systems have offered novel platforms which can better mimic the in vivo microenvironment, thus possessing potential in transformation of ophthalmic drug development. In this review we summarize existing in vitro ocular models while discussing applicability, drawbacks associated with them, and possible future applications.

参考文献
  1. Chuang K, Fields MA, Del Priore LV. Focus: Genome editing: Potential of gene editing and induced pluripotent stem cells (iPSCs) in treatment of retinal diseases. Yale J Biol Med. 2017 Dec 19;90(4):635-42. PMCID: 29259527.

  2. Cholkar K, Patel SP, Vadlapudi AD, Mitra AK. Novel strategies for anterior segment ocular drug delivery. J Ocular Pharmacol Therapeut. 2013;29(2):106-23.

  3. Shafaie S, Hutter V, Cook MT, Brown MB, Chau DY. In vitro cell models for ophthalmic drug development applications. Biores Open Access. 2016;5(1):94-108.

  4. Wilson SL, Ahearne M, Hopkinson A. An overview of current techniques for ocular toxicity testing. Toxicology. 2015;327:32-46.

  5. Huhtala A, Salminen L, Tahti H, Uusitalo H. Corneal models for the toxicity testing of drugs and drug releasing materials. In: Ashammakhi N, editor. Topics in multifunctional biomaterials and devices. 2008. p. 1-24.

  6. Ubels JL, Clousing DP. In vitro alternatives to the use of animals in ocular toxicology testing. Ocul Surf. 2005;3(3):126-42.

  7. Iwata T, Tomarev S.Animal models for eye diseases and therapeutics. In: Conn PM, editor. Sourcebook of models for biomedical research. Humana Press; 2008. p. 279-87.

  8. Kutlehria S, Vhora I, Bagde A, Chowdhury N, Behl G, Patel K, Singh M. Tacrolimus loaded PEG-cholecalciferol based micelles for treatment of ocular inflammation. Pharm Res. 2018;35(6):117.

  9. Barabino S, Dana MR. Animal models of dry eye: A critical assessment of opportunities and limitations. Invest Ophthalmol Vis Sci. 2004;45(6):1641-6.

  10. Liu C-H, Wang Z, Sun Y, Chen J. Animal models of ocular angiogenesis: From development to pathologies. FASEB J. 2017;31(11):4665-81.

  11. Barile FA. Validating and troubleshooting ocular in vitro toxicology tests. J Pharmacol Toxicol Methods. 2010;61(2):136-45.

  12. Kutlehria S, Bagde A, Patel N, Singh M. Whole-eye perfusion model for screening of the ocular formulations via confocal laser scanning microscopy. AAPS PharmSciTech. 2019;20(7):307.

  13. Eskes C, Bessou S, Bruner L, Curren R, Harbell J, Jones P, Kreiling R, Liebsch M, McNamee P, Pape W. Eye irritation. Altern Lab Anim. 2005;33(Suppl 1):47-81.

  14. Zhou EH, Paolucci M, Dryja TP, Manley T, Xiang C, Rice DS, Prasanna G, Chen A. A compact whole-eye perfusion system to evaluate pharmacologic responses of outflow facility. Invest Ophthalmol Vis Sci. 2017;58(7):2991-3003.

  15. Cakmak HB, Cagil N, Simavli H, Raza S. Corneal white-to-white distance and mesopic pupil diameter. Int J Ophthal. 2012;5(4):505-9.

  16. Qazi Y, Wong G, Monson B, Stringham J, Ambati BK. Corneal transparency: Genesis, maintenance and dysfunction. Brain Res Bull. 2010;81(2-3):198-210.

  17. Norman RE, Flanagan JG, Rausch SM, Sigal IA, Tertinegg I, Eilaghi A, Portnoy S, Sled JG, Ethier CR. Dimensions of the human sclera: Thickness measurement and regional changes with axial length. Exp Eye Res. 2010;90(2):277-84.

  18. Zhang X-R, Zhang Z-Y, Hoffman MR. Conjunctival thickness measured by optical coherence tomography. Ophthalmology. 2013;120(6):1305.

  19. Ahmed I, Patton T. Importance of the noncorneal absorption route in topical ophthalmic drug delivery. Invest Ophthalmol Vis Sci. 1985;26(4):584-7.

  20. White CE, Olabisi RM. Scaffolds for retinal pigment epithelial cell transplantation in age-related macular degeneration. J Tissue Eng. 2017;8:1-11. PMCID: PMC5524239.

  21. Remington LA. Chapter 4 - Retina. In: Remington LA, editor. Clinical anatomy and physiology of the visual system. 3rd ed. Saint Louis: Butterworth-Heinemann; 2012. p. 61-92.

  22. Forest DL, Johnson LV, Clegg DO. Cellular models and therapies for age-related macular degeneration. Dis Model Mech. 2015;8(5):421-7.

  23. Campbell M, Humphries P. The blood-retina barrier: Tight junctions and barrier modulation. Adv Exp Med Biol. 2012;763:70-84.

  24. Chowdhury N, Vhora I, Patel K, Bagde A, Kutlehria S, Singh M. Development of hot melt extruded solid dispersion of tamoxifen citrate and resveratrol for synergistic effects on breast cancer cells. AAPS PharmSciTech. 2018;19(7):3287-97.

  25. Doddapaneni R, Patel K, Chowdhury N, Singh M. Noscapine chemosensitization enhances docetaxel anticancer activity and nanocarrier uptake in triple negative breast cancer. Exper Cell Res. 2016;346(1):65-73.

  26. Patel K, Chowdhury N, Doddapaneni R, Boakye CH, Godugu C, Singh M. Piperlongumine for enhancing oral bioavailability and cytotoxicity of docetaxel in triple-negative breast cancer. J Pharm Sci. 2015;104(12):4417-26.

  27. Kutlehria S, Behl G, Patel K, Doddapaneni R, Vhora I, Chowdhury N, Bagde A, Singh M. Cholecalciferol-PEG conjugate based nanomicelles of doxorubicin for treatment of triple-negative breast cancer. AAPS PharmSciTech. 2018;19(2):792-802.

  28. Nottingham E, Sekar V, Mondal A, Safe S, Rishi A, Singh M. The role of self nano emulsifying drug delivery systems of CDODA-Me in sensitizing Erlotinib resistant nonsmall cell lung cancer. J Pharm Sci. 2020;109(6):1867-82.

  29. Ferdous AJ, Stembridge NY, Singh M. Role of monensin PLGA polymer nanoparticles and liposomes as potentiator of ricin A immunotoxins in vitro. J Control Release. 1998;50(1-3):71-8.

  30. Boakye CH, Patel K, Doddapaneni R, Bagde A, Marepally S, Singh M. Novel amphiphilic lipid augments the co-delivery of erlotinib and IL36 siRNA into the skin for psoriasis treatment. J Control Release. 2017;246:120-32.

  31. Boakye CH, Patel K, Patel AR, Faria HA, Zucolotto V, Safe S, Singh M. Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: Characterization and evaluation. Drug Deliv Transl Res. 2016;6(5):526-39.

  32. Tripathi B, Tripathi R. Cytotoxic effects of benzalkonium chloride and chlorobutanol on human corneal epithelial cells in vitro. Lens Eye Toxic Res. 1989;6(3):395-403.

  33. Tripathi BJ, Tripathi RC. Hydrogen peroxide damage to human corneal epithelial cells in vitro: Implications for contact lens disinfection systems. Arch Ophthalmol. 1989;107(10):1516-9.

  34. Tripathi B, Tripathi R, Millard C, Borisuth N. Cytotoxicity of hydrogen peroxide to human corneal epithelium in vitro and its clinical implications. Lens Eye Toxic Res. 1990;7(3-4):385-401.

  35. Scott L, Eskes C, Hoffmann S, Adriaens E, Alepee N, Bufo M, Clothier R, Facchini D, Faller C, Guest R. A proposed eye irritation testing strategy to reduce and replace in vivo studies using bottom-up and top-down approaches. Toxicol In Vitro. 2010;24(1):1-9.

  36. Han B, Schwab IR, Madsen TK, Isseroff RR. A fibrin-based bioengineered ocular surface with human corneal epithelial stem cells. Cornea. 2002;21(5):505-10.

  37. Ramaesh K, Dhillon B. Ex vivo expansion of corneal limbal epithelial/stem cells for corneal surface reconstruction. Eur J Ophthalmol. 2003;13(6):515-24.

  38. Narvekar P, Bhatt P, Fnu G, Sutariya V. Axitinib-loaded poly (lactic-co-glycolic acid) nanoparticles for age-related macular degeneration: Formulation development and in vitro characterization. Assay Drug Dev Technol. 2019;17(4):167-77.

  39. Guo C, Zhang Y, Yang Z, Li M, Li F, Cui F, Liu T, Shi W, Wu X. Nanomicelle formulation for topical delivery of cyclosporine A into the cornea: In vitro mechanism and in vivo permeation evaluation. Sci Rep. 2015;5:12968.

  40. Schuerer N, Stein E, Inic-Kanada A, Pucher M, Hohenadl C, Bintner N, Ghasemian E, Montanaro J, Barisani-Asenbauer T. Implications for ophthalmic formulations: Ocular buffers show varied cytotoxic impact on human corneal-limbal and human conjunctival epithelial cells. Cornea. 2017;36(6):712.

  41. Rangarajan R, Ketelson HA, Do R, McCanna DJ, Suko A, Enstone D, Subbaraman LN, Dantam J, Jones LW. Effect of artificial tear formulations on the metabolic activity of human corneal epithelial cells after exposure to desiccation. J Vis Exp. 2020;(159). doi: 10.3791/60812.

  42. Bucolo C, Fidilio A, Platania CBM, Geraci F, Lazzara F, Drago F. Antioxidant and osmoprotecting activity of taurine in dry eye models. J Ocul Pharmacol Ther. 2018;34(1-2):188-94.

  43. Hoffman HM, Choi JH, Clousing DP, Ubels JL, McCarey BE, Edelhauser HF. Corneal epithelial testing strategies for safety evaluation of ophthalmic formulations. Cutan Ocular Toxicol. 2007;26(4): 311-27.

  44. Ban Y, Cooper LJ, Fullwood NJ, Nakamura T, Tsuzuki M, Koizumi N, Dota A, Mochida C, Kinoshita S. Comparison of ultrastructure, tight junction-related protein expression and barrier function of human corneal epithelial cells cultivated on amniotic membrane with and without air-lifting. Exp Eye Res. 2003;76(6):735-43.

  45. Nagai N, Nakazawa Y, Ito Y, Kanai K, Okamoto N, Shimomura Y. A nanoparticle-based ophthalmic formulation of dexamethasone enhances corneal permeability of the drug and prolongs its corneal residence time. Biol Pharm Bull. 2017;40(7):1055-62.

  46. Alaminos M, Sanchez-Quevedo MDC, Munoz-Avila JI, Serrano D, Medialdea S, Carreras I, Campos A. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold. Invest Ophthalmol Vis Sci. 2006;47(8):3311-7.

  47. Duan X, McLaughlin C, Griffith M, Sheardown H. Biofunctionalization of collagen for improved biological response: Scaffolds for corneal tissue engineering. Biomaterials. 2007;28(1):78-88.

  48. Griffith M, Osborne R, Munger R, Xiong X, Doillon CJ, Laycock NL, Hakim M, Song Y, Watsky MA. Functional human corneal equivalents constructed from cell lines. Science. 1999;286(5447):2169-72.

  49. Reichl S, Bednarz J, Muller-Goymann C. Human corneal equivalent as cell culture model for in vitro drug permeation studies. Br J Ophthalmol. 2004;88(4):560-5.

  50. Reichl S, Dohring S, Bednarz J, Muller-Goymann CC. Human cornea construct HCC-An alternative for in vitro permeation studies? A comparison with human donor corneas. Eur J Pharm Biopharm. 2005;60(2):305-8.

  51. Doillon C, Watsky MA, Hakim M, Wang J, Munger R, Laycock N, Osborne R, Griffith M. A collagen-based scaffold for a tissue engineered human cornea: Physical and physiological properties. Int J Artif Organs. 2003;26(8):764-73.

  52. Tegtmeyer S, Papantoniou I, Muller-Goymann CC. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride. Eur J Pharm Biopharm. 2001;51(2):119-25.

  53. Tegtmeyer S, Reichl S, Muller-Goymann C. Cultivation and characterization of a bovine in vitro model of the cornea. Pharmazie. 2004;59(6):464-71.

  54. Zieske JD, Mason VS, Wasson ME, Meunier SF, Nolte CJ, Fukai N, Olsen BR, Parenteau NL. Basement membrane assembly and differentiation of cultured corneal cells: Importance of culture environment and endothelial cell interaction. Exp Cell Res. 1994;214(2):621-33.

  55. Ju C, Gao L, Wu X, Pang K. A human corneal endothelium equivalent constructed with acellular porcine corneal matrix. Indian J Med Res. 2012;135(6):887-94.

  56. Zhao B, Cooper LJ, Brahma A, MacNeil S, Rimmer S, Fullwood NJ. Development of a three-dimensional organ culture model for corneal wound healing and corneal transplantation. Invest Ophthalmol Vis Sci. 2006;47(7):2840-6.

  57. Reich S, Muller-Goymann C. Development of an organotypical cornea construct as an in vitro model for permeation studies. Ophthalmologe. 2001;98(9):853-8.

  58. Stern M, Klausner M, Alvarado R, Renskers K, Dickens M. Evaluation of the EpiOcularTM tissue model as an alternative to the Draize eye irritation test. Toxicol In Vitro. 1998;12(4):455-61.

  59. Kaluzhny Y, Kandarova H, Hayden P, Kubilus J, d'Argembeau-Thornton L, Klausner M. Development of the EpiOcular eye irritation test for hazard identification and labelling of eye irritating chemicals in response to the requirements of the EU cosmetics directive and REACH legislation. Altern Lab Anim. 2011;39(4):339-64.

  60. Alepee N, Leblanc V, Adriaens E, Grandidier M, Lelievre D, Meloni M, Nardelli L, Roper C, Santirocco E, Toner F. Multi-laboratory validation of SkinEthic HCE test method for testing serious eye damage/eye irritation using liquid chemicals. Toxicol In Vitro. 2016;31:43-53.

  61. Kulkarni AA, Chang W, Shen J, Welty D. Use of Clonetics human corneal epithelial cell model for evaluating corneal penetration and hydrolysis of ophthalmic drug candidates. Invest Ophthalmol Vis Sci. 2011;52(14):3259.

  62. Kaluzhny Y, Kinuthia MW, Truong T, Lapointe AM, Hayden P, Klausner M. New human organotypic corneal tissue model for ophthalmic drug delivery studies. Invest Ophthalmol Vis Sci. 2018;59(7):2880-98.

  63. Defoe DM, Ahmad A, Chen W, Hughes BA. Membrane polarity of the Na+-K+ pump in primary cultures of Xenopus retinal pigment epithelium. Exp Eye Res. 1994;59(5):587-96.

  64. Chang C-W, Ye L, Defoe DM, Caldwell RB. Serum inhibits tight junction formation in cultured pigment epithelial cells. Invest Ophthalmol Vis Sci. 1997;38(6):1082-93.

  65. Hartnett ME, Lappas A, Darland D, McColm JR, Lovejoy S, D'Amore PA. Retinal pigment epithelium and endothelial cell interaction causes retinal pigment epithelial barrier dysfunction via a soluble VEGF-dependent mechanism. Exp Eye Res. 2003;77(5):593-9.

  66. Peng S, Rahner C, Rizzolo LJ. Apical and basal regulation of the permeability of the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2003;44(2):808-17.

  67. Lu SC, Sun W-M, Nagineni CN, Hooks JJ, Kannan R. Bidirectional glutathione transport by cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1995;36(12):2523-30.

  68. Huang W, Prasad PD, Kekuda R, Leibach FH, Ganapathy V. Characterization of N5-methyltetrahydrofolate uptake in cultured human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci. 1997;38(8):1578-87.

  69. Hamann S, La Cour M, Lui GM, Bundgaard M, Zeuthen T. Transport of protons and lactate in cultured human fetal retinal pigment epithelial cells. Pflugers Arch. 2000;440(1):84-92.

  70. Han Y-H, Sweet DH, Hu D-N, Pritchard JB. Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther. 2001;296(2):450-7.

  71. Dunn K, Aotaki-Keen A, Putkey F, Hjelmeland LM. ARPE-19, a human retinal pigment epithelial cell line with differentiated properties. Exp Eye Res. 1996;62(2):155-70.

  72. Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu C-P, Morin GB, Harley CB, Shay JW, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349-52.

  73. Nabi IR, Mathews AP, Cohen-Gould L, Gundersen D, Rodriguez-Boulan E. Immortalization of polarized rat retinal pigment epithelium. J Cell Sci. 1993;104(1):37-49.

  74. Hellinen L, Pirskanen L, Tengvall-Unadike U, Urtti A, Reinisalo M. Retinal pigment epithelial cell line with fast differentiation and improved barrier properties. Pharmaceutics. 2019;11(8):412.

  75. Hellinen L, Hagstrom M, Knuutila H, Ruponen M, Urtti A, Reinisalo M. Characterization of artificially re-pigmented ARPE-19 retinal pigment epithelial cell model. Sci Rep. 2019;9(1):1-10.

  76. Bennis A, Jacobs J, Catsburg LA, Ten Brink JB, Koster C, Schlingemann RO, van Meurs J, Gorgels TG, Moerland PD, Heine VM. Stem cell-derived retinal pigment epithelium: The role of pigmentation as maturation marker and gene expression profile comparison with human endogenous retinal pigment epithelium. Stem Cell Rev Rep. 2017;13(5):659-69.

  77. Bhatt P, Narvekar P, Lalani R, Chougule MB, Pathak Y, Sutariya V. An in vitro assessment of thermo-reversible gel formulation containing sunitinib nanoparticles for neovascular age-related macular degeneration. AAPS PharmSciTech. 2019;20(7):281.

  78. Hellinen L, Hongisto H, Ramsay E, Kaarniranta K, Vellonen K-S, Skottman H, Ruponen M. Drug flux across RPE cell models: The hunt for an appropriate outer blood-retinal barrier model for use in early drug discovery. Pharmaceutics. 2020;12(2):176.

  79. Spencer C, Abend S, McHugh KJ, Saint-Geniez M. Identification of a synergistic interaction between endothelial cells and retinal pigment epithelium. J Cell Mol Med. 2017;21(10):2542-52.

  80. Cai H, Gong J, Del Priore LV, Tezel TH, Fields MA. Culturing of retinal pigment epithelial cells on an ex vivo model of aged human Bruch's membrane. J Vis Exp. 2018;(134):e57084.

  81. Palanisamy K, Karunakaran C, Raman R, Chidambaram S. Optimization of an in vitro bilayer model for studying the functional interplay between human primary retinal pigment epithelial and choroidal endothelial cells isolated from donor eyes. BMC Res Notes. 2019;12(1):307.

  82. Engelmann K, Valtink M. RPE cell cultivation. Graefes Arch Clin Exp Ophthalmol. 2004;242(1): 65-7.

  83. Gillies MC, Su T, Naidoo D. Electrical resistance and macromolecular permeability of retinal capillary endothelial cells in vitro. Curr Eye Res. 1995;14(6):435-42.

  84. Gillies MC, Su T, Stayt J, Simpson JM, Naidoo D, Salonikas C. Effect of high glucose on permeability of retinal capillary endothelium in vitro. Invest Ophthalmol Vis Sci. 1997;38(3):635-42.

  85. Tretiach M, Van Driel D, Gillies MC. Transendothelial electrical resistanceof bovine retinal capillary endothelial cells is influenced by cell growth patterns: An ultrastructural study. Clin Exp Ophthalmol. 2003;31(4):348-53.

  86. Abukawa H, Tomi M, Kiyokawa J, Hori S, Kondo T, Terasaki T, Hosoya K-I. Modulation of retinal capillary endothelial cells by Muller glial cell-derived factors. Mol Vis. 2009;15:451-7.

  87. Shen J, Cross ST, Tang-Liu DD, Welty DF. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res. 2003;20(9):1357-63.

  88. Churm R, Dunseath GJ, Prior SL, Thomas RL, Banerjee S, Owens DR. Development and characterization of an in vitro system of the human retina using cultured cell lines. Clin Exp Ophthalmol. 2019;47(8):1055-62.

  89. Wu N, Doorenbos M, Chen DF. Induced pluripotent stem cells: Development in the ophthalmologic field. Stem Cells Int. 2016;2016.

  90. Zhu J, Slevin M, Guo B-Q, Zhu S-R. Induced pluripotent stem cells as a potential therapeutic source for corneal epithelial stem cells. Int J Ophthalmol. 2018;11(12):2004-10.

  91. Schermer A, Galvin S, Sun T-T. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103(1):49-62.

  92. Bai J, Wang C. Organoids and microphysiological systems: New tools for ophthalmic drug discovery. Front Pharmacol. 2020;11:407.

  93. Foster JW, Wahlin K, Adams SM, Birk DE, Zack DJ, Chakravarti S. Cornea organoids from human induced pluripotent stem cells. Sci Rep. 2017;7(1):1-8.

  94. Susaimanickam PJ, Maddileti S, Pulimamidi VK, Boyinpally SR, Naik RR, Naik MN, Reddy GB, Sangwan VS, Mariappan I. Generating minicorneal organoids from human induced pluripotent stem cells. Development. 2017;144(13):2338-51.

  95. Joseph R, Srivastava OP, Pfister RR. Modeling keratoconus using induced pluripotent stem cells. Invest Ophthalmol Vis Sci. 2016;57(8):3685-97.

  96. Aberdam E, Petit I, Sangari L, Aberdam D. Induced pluripotent stem cell-derived limbal epithelial cells (LiPSC) as a cellular alternative for in vitro ocular toxicity testing. PLoS One. 2017;12(6):e0179913.

  97. Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells. 2011;29(8):1206-18.

  98. Ito S-I, Onishi A, Takahashi M. Chemically-induced photoreceptor degeneration and protection in mouse iPSC-derived three-dimensional retinal organoids. Stem Cell Res. 2017;24:94-101.

  99. Burnight E, Wiley L, Drack A, Braun T, Anfinson K, Kaalberg E, Halder J, Affatigato L, Mullins R, Stone E. CEP290 gene transfer rescues Leber congenital amaurosis cellular phenotype. Gene Ther. 2014;21(7):662-72.

  100. Lukovic D, Castro AA, Delgado ABG, Bernal MdlAM, Pelaez NL, Lloret AD, Espejo RP, Kamenarova K, Sanchez LF, Cuenca N. Human iPSC derived disease model of MERTK-associated retinitis pigmentosa. Sci Rep. 2015;5:12910.

  101. Singh R, Kuai D, Guziewicz KE, Meyer J, Wilson M, Lu J, Smith M, Clark E, Verhoeven A, Aguirre GD. Pharmacological modulation of photoreceptor outer segment degradation in a human iPS cell model of inherited macular degeneration. Mol Ther. 2015;23(11):1700-11.

  102. Leach LL, Buchholz DE, Nadar VP, Lowenstein SE, Clegg DO. Canonical/p-catenin Wnt pathway activation improves retinal pigmented epithelium derivation from human embryonic stem cells. Invest Ophthalmol Vis Sci. 2015;56(2):1002-13.

  103. Schwarz N, Carr A-J, Lane A, Moeller F, Chen LL, Aguila M, Nommiste B, Muthiah MN, Kanuga N, Wolfrum U. Translational read-through of the RP2 Arg120stop mutation in patient iPSC-derived retinal pigment epithelium cells. Hum Mol Genet. 2015;24(4):972-86.

  104. Sridhar A, Langer KB, Fligor CM, Steinhart M, Miller CA, Ho-A-Lim KT, Ohlemacher SK, Meyer JS. Human pluripotent stem cells as in vitro models for retinal development and disease. In: Ballios B, Young M, editors. Regenerative medicine and stem cell therapy for the eye. Cham, Switzerland: Springer; 2018. p. 17-49.

  105. Wu SM, Hochedlinger K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nature Cell Biol. 2011;13(5):497-505.

  106. Yvon C, Ramsden CM, Lane A, Powner MB, da Cruz L, Coffey PJ, Carr A-JF. Using stem cells to model diseases of the outer retina. Comput Struct Biotechnol J. 2015;13:382-9.

  107. Singh R, Shen W, Kuai D, Martin JM, Guo X, Smith MA, Perez ET, Phillips MJ, Simonett JM, Wallace KA. iPS cell modeling of Best disease: Insights into the pathophysiology of an inherited macular degeneration. Hum Mol Genet. 2013;22(3):593-607.

  108. Yang J, Li Y, Chan L, Tsai Y-T, Wu W-H, Nguyen HV, Hsu C-W, Li X, Brown LM, Egli D. Validation of genome-wide association study (GWAS)-identified disease risk alleles with patient-specific stem cell lines. Hum Mol Genet. 2014;23(13):3445-55.

  109. Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells. 2011;29(5): 825-35.

  110. Saini JS, Corneo B, Miller JD, Kiehl TR, Wang Q, Boles NC, Blenkinsop TA, Stern JH, Temple S. Nicotinamide ameliorates disease phenotypes in a human iPSC model of age-related macular degeneration. Cell Stem Cell. 2017;20(5):635-47.e7.

  111. Chang Y-C, Chang W-C, Hung K-H, Yang D-M, Cheng Y-H, Liao Y-W, Woung L-C, Tsai C-Y, Hsu C-C, Lin T-C. The generation of induced pluripotent stem cells for macular degeneration as a drug screening platform: Identification of curcumin as a protective agent for retinal pigment epithelial cells against oxidative stress. Front Aging Neurosci. 2014;6:191.

  112. Ferrer M, Corneo B, Davis J, Wan Q, Miyagishima KJ, King R, Maminishkis A, Marugan J, Sharma R, Shure M. A multiplex high-throughput gene expression assay to simultaneously detect disease and functional markers in induced pluripotent stem cell-derived retinal pigment epithelium. Stem Cells Transl Med. 2014;3(8):911-22.

  113. Tucker BA, Mullins RF, Streb LM, Anfinson K, Eyestone ME, Kaalberg E, Riker MJ, Drack AV, Braun TA, Stone EM. Patient-specific iPSC-derived photoreceptor precursor cells as a means to investigate retinitis pigmentosa. Elife. 2013;2:e00824.

  114. Yoshida T, Ozawa Y, Suzuki K, Yuki K, Ohyama M, Akamatsu W, Matsuzaki Y, Shimmura S, Mitani K, Tsubota K. The use of induced pluripotent stem cells to reveal pathogenic gene mutations and explore treatments for retinitis pigmentosa. Mol Brain. 2014;7(1):45.

  115. Li Y, Wu W-H, Hsu C-W, Nguyen HV, Tsai Y-T, Chan L, Nagasaki T, Maumenee IH, Yannuzzi LA, Hoang QV. Gene therapy in patient-specific stem cell lines and a preclinical model of retinitis pigmentosa with membrane frizzled-related protein defects. Mol Ther. 2014;22(9):1688-97.

  116. Jin Z-B, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS One. 2011;6(2):e17084.

  117. Ohlemacher SK, Sridhar A, Xiao Y, Hochstetler AE, Sarfarazi M, Cummins TR, Meyer JS. Stepwise differentiation of retinal ganglion cells from human pluripotent stem cells enables analysis of glaucomatous neurodegeneration. Stem Cells. 2016;34(6):1553-62.

  118. Deng F, Chen M, Liu Y, Hu H, Xiong Y, Xu C, Liu Y, Li K, Zhuang J, Ge J. Stage-specific differentiation of iPSCs toward retinal ganglion cell lineage. Mol Vis. 2016;22:536-47.

  119. Teotia P, Chopra DA, Dravid SM, Van Hook MJ, Qiu F, Morrison J, Rizzino A, Ahmad I. Generation of functional human retinal ganglion cells with target specificity from pluripotent stem cells by chemically defined recapitulation of developmental mechanism. Stem Cells. 2017;35(3):572-85.

  120. Chen J, Riazifar H, Guan M-X, Huang T. Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets. Stem Cell Res Ther. 2016;7(1):2.

  121. Vergara MN, Flores-Bellver M, Aparicio-Domingo S, McNally M, Wahlin KJ, Saxena MT, Mumm JS, Canto-Soler MV. Three-dimensional automated reporter quantification (3D-ARQ) technology enables quantitative screening in retinal organoids. Development. 2017;144(20):3698-705.

  122. Aasen DM, Vergara MN. New drug discovery paradigms for retinal diseases: A focus on retinal organoids. J Ocul Pharmacol Ther. 2020;36(1):18-24.

  123. Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci. 2011;100(1):59-74.

  124. Postnikoff CK, Pintwala R, Williams S, Wright AM, Hileeto D, Gorbet MB. Development of a curved, stratified, in vitro model to assess ocular biocompatibility. PLoS One. 2014;9(5):e96448.

  125. Fligor CM, Langer KB, Sridhar A, Ren Y, Shields PK, Edler MC, Ohlemacher SK, Sluch VM, Zack DJ, Zhang C. Three-dimensional retinal organoids facilitate the investigation of retinal ganglion cell development, organization and neurite outgrowth from human pluripotent stem cells. Sci Rep. 2018;8(1):1-14.

  126. McLelland BT, Lin B, Mathur A, Aramant RB, Thomas BB, Nistor G, Keirstead HS, Seiler MJ. Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest Ophthalmol Vis Sci. 2018;59(6):2586-603.

  127. Shokoohmand A, Jeon JE, Theodoropoulos C, Baldwin JG, Hutmacher DW, Feigl B. A novel 3D cultured model for studying early changes in age-related macular degeneration. Macromol Biosci. 2017;17(12):1700221.

  128. Lu Q, Yin H, Grant MP, Elisseeff JH. An in vitro model for the ocular surface and tear film system. Sci Rep. 2017;7(1):1-11.

  129. Zhu K, Shin SR, van Kempen T, Li YC, Ponraj V, Nasajpour A, Mandla S, Hu N, Liu X, Leijten J. Gold nanocomposite bioink for printing 3D cardiac constructs. Adv Funct Mater. 2017;27(12):1605352.

  130. Mondal A, Gebeyehu A, Miranda M, Bahadur D, Patel N, Ramakrishnan S, Rishi AK, Singh M. Characterization and printability of sodium alginate-gelatin hydrogel for bioprinting nScLc co-culture. Sci Rep. 2019;9(1):1-12.

  131. Mondal A, Gebeyehu A, Subramanian R, Rishi A, Singh M. Bioprinted (3D) co-cultured spheroids with NSCLC PDX cells and cancer associated fibroblasts (CAFs) using alginate/gelatin hydrogel. Cancer Res. 2018;78(13 Suppl):5018.

  132. Wang Y, Shi W, Kuss M, Mirza S, Qi D, Krasnoslobodtsev A, Zeng J, Band H, Band V, Duan B. 3D bioprinting of breast cancer models for drug resistance study. ACS Biomater Sci Eng. 2018;4(12):4401-11.

  133. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: Drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440-51.

  134. Giannopoulos AA, Mitsouras D, Yoo S-J, Liu PP, Chatzizisis YS, Rybicki FJ. Applications of 3D printing in cardiovascular diseases. Nat Rev Cardiol. 2016;13(12):701-18.

  135. Gibney R, Matthyssen S, Patterson J, Ferraris E, Zakaria N. The human cornea as a model tissue for additive biomanufacturing: A review. Procedia CIRP. 2017;65:56-63.

  136. Sommer AC, Blumenthal EZ. Implementations of 3D printing in ophthalmology. Graefes Arch Clin Exp Ophthalmol. 2019;257(9):1-8.

  137. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Exp Eye Res. 2018;173:188-93.

  138. Kutlehria S, Dinh TC, Bagde A, Patel N, Gebeyehu A, Singh M. High-throughput 3D bioprinting of corneal stromal equivalents. J Biomed Mater Res B Appl Biomater. 2020;108(7):2981-94.

  139. Kim H, Jang J, Park J, Lee K-P, Lee S, Lee D-M, Kim KH, Kim HK, Cho D-W. Shear-induced alignment of collagen fibrils using 3D cell printing for corneal stroma tissue engineering. Biofabrication. 2019;11(3):035017.

  140. Phan C-M, Walther H, Qiao H, Shinde R, Jones L. Development of an eye model with a physiological blink mechanism. Transl Vis Sci Technol. 2019;8(5):1-12.

  141. Shi P, Yeong WY, Laude A, Tan EYS. Hybrid three-dimensional (3D) bioprinting of retina equivalent for ocular research. Int J Bioprint. 2017;3(2):138-46.

  142. Lorber B, Hsiao W-K, Hutchings IM, Martin KR. Adult rat retinal ganglion cells and glia can be printed by piezoelectric inkjet printing. Biofabrication. 2013;6(1):015001.

  143. Kador KE, Grogan SP, Dorthe EW, Venugopalan P, Malek MF, Goldberg JL, D'lima DD. Control of retinal ganglion cell positioning and neurite growth: Combining 3D printing with radial electrospun scaffolds. Tissue Eng Part A. 2016;22(3-4):286-94.

  144. Wang P, Li X, Zhu W, Zhong Z, Moran A, Wang W, Zhang K, Chen S. 3D bioprinting of hydrogels for retina cell culturing. Bioprinting. 2018;12:e00029.

  145. Fenton OS, Paolini M, Andresen JL, Muller FJ, Langer R. Outlooks on three-dimensional printing for ocular biomaterials research. J Ocul Pharmacol Ther. 2020;36(1):7-17.

  146. Wu J, Mak HK, Chan YK, Lin C, Kong C, Leung CKS, Shum HC. An in vitro pressure model towards studying the response of primary retinal ganglion cells to elevated hydrostatic pressures. Sci Rep. 2019;9(1):1-12.

  147. Torrejon KY, Papke EL, Halman JR, Stolwijk J, Dautriche CN, Bergkvist M, Danias J, Sharfstein ST, Xie Y. Bioengineered glaucomatous 3D human trabecular meshwork as an in vitro disease model. Biotechnol Bioeng. 2016;113(6):1357-68.

  148. Huh D, Hamilton GA, Ingber DE. From 3D cell culture to organs-on-chips. Trends Cell Biol. 2011;21(12):745-54.

  149. Puleo CM, Ambrose WM, Takezawa T, Elisseeff J, Wang T-H. Integration and application of vitrified collagen in multilayered microfluidic devices for corneal microtissue culture. Lab Chip. 2009;9(22):3221-7.

  150. Seo J, Byun WY, Alisafaei F, Georgescu A, Yi Y-S, Massaro-Giordano M, Shenoy VB, Lee V, Bunya VY, Huh D. Multiscale reverse engineering of the human ocular surface. Nat Med. 2019;25(8):1310-8.

  151. Mattern K, BeiBner N, Reichl S, Dietzel A. DynaMiTES-A dynamic cell culture platform for in vitro drug testing PART 1-Engineering of microfluidic system and technical simulations. Eur J Pharm Biopharm. 2018;126:159-65.

  152. Beipner N, Mattern K, Dietzel A, Reichl S. DynaMiTES-A dynamic cell culture platform for in vitro drug testing PART 2-Ocular DynaMiTES for drug absorption studies of the anterior eye. Eur J Pharm Biopharm. 2018;126:166-76.

  153. Bennet D, Estlack Z, Reid T, Kim J. A microengineered human corneal epithelium-on-a-chip for eye drops mass transport evaluation. Lab Chip. 2018;18(11):1539-51.

  154. Haderspeck JC, Chuchuy J, Kustermann S, Liebau S, Loskill P. Organ-on-a-chip technologies that can transform ophthalmic drug discovery and disease modeling. Expert Opin Drug Discov. 2019;14(1):47-57.

  155. Su P-J, Liu Z, Zhang K, Han X, Saito Y, Xia X, Yokoi K, Shen H, Qin L. Retinal synaptic regeneration via microfluidic guiding channels. Sci Rep. 2015;5:1-7.

  156. Mishra S, Thakur A, Redenti S, Vazquez M. A model microfluidics-based system for the human and mouse retina. Biomed Microdevices. 2015;17(6):107.

  157. Dodson KH, Echevarria FD, Li D, Sappington RM, Edd JF. Retina-on-a-chip: A microfluidic platform for point access signaling studies. Biomed Microdevices. 2015;17(6):114.

  158. Kaji H, Ito S, Nagamine K, Nishizawa M, Nagai N, Abe T, editors. Characterization of retinal pigment epithelial cells and endothelial cells within a microfluidic device towards a retina on a chip. 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences MicroTAS; 2014.

  159. Chung M, Lee S, Lee BJ, Son K, Jeon NL, Kim JH. Wet-AMD on a chip: Modeling outer blood-retinal barrier in vitro. Adv Healthc Mater. 2018;7(2).

  160. Nafian F, Azad BKD, Yazdani S, Rasaee MJ, Daftarian N. A lab-on-a-chip model of glaucoma. BioRxiv. 2019:704510.

对本文的引用
  1. Zhao Yali, Hu Guohuang, Yan Yuwei, Wang Zhen, Liu Xiaohua, Shi Huanhuan, Biomechanical analysis of ocular diseases and its in vitro study methods, BioMedical Engineering OnLine, 21, 1, 2022. Crossref

  2. Arthur Peggy, Kandoi Sangeetha, Sun Li, Kalvala Anil, Kutlehria Shallu, Bhattacharya Santanu, Kulkarni Tanmay, Nimma Ramesh, Li Yan, Lamba Deepak A., Singh Mandip, Biophysical, Molecular and Proteomic Profiling of Human Retinal Organoid-Derived Exosomes, Pharmaceutical Research, 2022. Crossref

Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain