图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
合成材料:力学,计算和应用
ESCI SJR: 0.354 SNIP: 0.655 CiteScore™: 1.2

ISSN 打印: 2152-2057
ISSN 在线: 2152-2073

合成材料:力学,计算和应用

DOI: 10.1615/CompMechComputApplIntJ.2020033732
pages 227-238

DEVELOPMENT OF A MULTILAYER COMPOSITE MATERIAL USING GRAPHENE OXIDE-COATED MILLED GLASS FIBER AS A MATRIX REINFORCEMENT AGENT

Arilí Cárdenas Robles
Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Francisco David Mateos Anzaldo
Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Juan de Dios Ocampo Díaz
Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Benjamín Valdez Salas
Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Rogelio Ignacio Ballesteros Llanes
Honeywell Aerospace, ETS (Engineering Test Services) Materials Laboratory, Col. Parque el Vigía No. 2, C.P. 21395, Mexicali, B.C., México
Mario Alberto Curiel Álvarez
Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Nicola Nedev
Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Álvaro González Ángeles
Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Rodolfo Morales Ibarra
Facultad de Ingeniería Mecánica y Eléctrica (Universidad Autónoma de Nuevo León), Av. Universidad s/n. Ciudad Universitaria, San Nicolás de los Garza, Nuevo León, C.P, 66451, México
Israel Sauceda Meza
Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez s/n, C.P. 21280, Mexicali, B.C., México
Armando Pérez Sánchez
Escuela de Ciencias de Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario #1000, Unidad Valle de las Palmas, Tijuana, B.C., México

ABSTRACT

This work analyzes the mechanical behavior when graphene oxide (GO) is added as a reinforcing agent to milled glass fibers (MGFs) in composite material, manufactured by a hand lay-up technique using a thermoset polymer. The objective of this investigation is to comprise the influence of reinforcement agent in a composite material. In this case, the composites were fabricated by a hand lay-up technique. Three types of test specimens were prepared, with the main difference being the reinforcement material in the matrix−Sample 1: epoxy resin only, Sample 2: epoxy with MGFs, and Sample 3: epoxy with GO-coated MGFs.
All specimens were assessed with the aid of scanning electron microscopy and energy dispersive spectroscopy analysis to evaluate the coating and elements present in the samples. Mechanical properties were obtained in the American Society of Testing Materials (ASTM) standard tensile and flexural tests. Our results show that the addition of 0.4 wt.% GO as a coating to epoxy with MGFs improves the tensile strength with 8.64% concerning the strength of epoxy resin with MGFs and a unidirectional stitched fiberglass reinforcement.

REFERENCES

  1. Acik, M., Mattevi, C., Gong, C., Lee, G., Cho, K., Chhowalla, M., and Chabal, Y.J., The Role of Intercalated Water in Multilayered Graphene Oxide, ACS Nano, vol. 4, no. 10, pp. 5861-5868, 2010, https:// doi.org/10.1021/nn101844t.

  2. Bortz, D.R., Heras, E.G., and Martin-Gullon, I., Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites, Macromolecules, vol. 45, no. 1, pp. 238-245, 2012, https://doi.org/10.1021/ma201563k.

  3. Chawla, K.K., Composite Materials, New York: Springer, pp. 137-195, 2012, https://doi.org/10.1007/978- 0-387-74365-3.

  4. Chen, D., Feng, H., and Li, J., Graphene Oxide: Preparation, Functionalization, and Electrochemical Applications, Chem. Rev., vol. 112, no. 11, pp. 6027-6053, 2012, https://doi.org/10.1021/cr300115g.

  5. Chen, J., Zhao, D., Jin, X., Wang, C., Wang, D., and Ge, H., Modifying Glass Fibers with Graphene Oxide: Towards High-Performance Polymer Composites, Compos. Sci. Technol., vol. 97, pp. 41-45, 2014, https://doi.org/10.1016/jxompscitech.2014.03.023.

  6. Chen, M., Zhu, S., and Wang, F., Strengthening Mechanisms and Fracture Surface Characteristics of Silicate Glass Matrix Composites with Inclusion of Alumina Particles of Different Particle Sizes, Physica B: Condens. Matter, vol. 413, pp. 15-20, 2013, https://doi.org/10.1016Zj.physb.2013.01.006.

  7. Clyne, T.W. and Hull, D., An Introduction to Composite Materials, Cambridge, UK: Cambridge University Press, pp. 9-30, 2019, https://doi.org/10.1017/9781139050586.

  8. Du, S.-S., Li, F., Xiao, H.-M., Li, Y.-Q., Hu, N., and Fu, S.-Y., Tensile and Flexural Properties of Graphene Oxide Coated-Short Glass Fiber Reinforced Polyethersulfone Composites, Composites Part B: Engineering, vol. 99, pp. 407-415, 2016, https://doi.org/10.1016/j.compositesb.2016.06.023.

  9. Friedrich, K. and Almajid, A.A., Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications, Appl. Compos. Mater., vol. 20, no. 2, pp. 107-128, 2013, https://doi.org/10.1007/ s10443-012-9258-7.

  10. Fu, S., Effects of Fiber Length and Fiber Orientation Distributions on the Tensile Strength of Short-Fiber-Reinforced Polymers, Compos. Sci. Technol., vol. 56, no. 10, pp. 1179-1190, 1996, https://doi. org/10.1016/S0266-3538(96)00072-3.

  11. Gao, W., The Chemistry of Graphene Oxide, in Graphene Oxide, Springer International Publishing, pp. 61-95, 2015, https://doi.org/10.1007/978-3-319-15500-5_3.

  12. Garda, V., Vargas, L., Acuna, A., Sosa, J.B., Durazo, E., Ballesteros, R., and Ocampo, J., Evaluation of Basalt Fibers on Wind Turbine Blades through Finite Element Analysis, Adv. Mater. Sci. Eng., vol. 2019, pp. 1-12, 2019, https://doi.org/10.1155/2019/1536925.

  13. Li, Y., Umer, R., Samad, Y.A., Zheng, L., and Liao, K., The Effect of the Ultrasonication Pre-Treatment of Graphene Oxide (GO) on the Mechanical Properties of GO/Polyvinyl Alcohol Composites, Carbon, vol. 55, pp. 321-327, 2013, https://doi.org/10.1016/j.carbon.2012.12.071.

  14. Liu, L., Yan, F., Li, M., Zhang, M., Xiao, L., Shang, L., and Ao, Y., Improving Interfacial Properties of Hierarchical Reinforcement Carbon Fibers Modified by Graphene Oxide with Different Bonding Types, Composites Part A: Appl. Sci. Manuf., vol. 107, pp. 616-625, 2018, https://doi.org/10.1016/j. compositesa.2018.02.009.

  15. Ma, P.-C., Liu, J.-W., Gao, S.-L., and Mader, E., Development of Functional Glass Fibers with Nano-composite Coating: A Comparative Study, Composites Part A: Appl. Sci. Manuf., vol. 44, pp. 16-22, 2013, https://doi.org/10.1016/jxompositesa.2012.08.027.

  16. Mallick, P.K. (Ed.), Composites Engineering Handbook, Boca Raton, FL: CRC Press, pp. 1-50, 1997, https://doi.org/10.1201/9781482277739.

  17. Montazeri, A., Javadpour, J., Khavandi, A., Tcharkhtchi, A., and Mohajeri, A., Mechanical Properties of Multi-Walled Carbon Nanotube/Epoxy Composites, Mater. Design, vol. 31, no. 9, pp. 4202-4208, 2010, https://doi.org/10.1016/j.matdes.2010.04.018.

  18. Mortazavian, S. and Fatemi, A., Effects of Fiber Orientation and Anisotropy on Tensile Strength and Elastic Modulus of Short Fiber Reinforced Polymer Composites, Composites Part B: Engineering, vol. 72, pp. 116-129, 2015, https://doi.org/10.1016/jxompositesb.2014.11.041.

  19. Ning, N., Zhang, W., Yan, J., Xu, F., Wang, T., Su, H., Tang, C., and Fu, Q., Largely Enhanced Crystallization of Semi-Crystalline Polymer on the Surface of Glass Fiber by Using Graphene Oxide as a Modifier, Polymer, vol. 54, no. 1, pp. 303-309, 2013, https://doi.org/10.1016/j.polymer.2012.11.045.

  20. Park, M.-S., Lee, S., and Lee, Y.-S., Mechanical Properties of Epoxy Composites Reinforced with Ammonia-Treated Graphene Oxides, Carbon Lett., vol. 21, pp. 1-7, 2017, https://doi.org/10.5714/ CL.2017.21.001.

  21. Pascault, J.-P. and Williams, R.J.J., General Concepts about Epoxy Polymers, in Epoxy Polymers, Wiley-VCH Verlag GmbH & Co. KGaA, pp. 1-12, 2010, https://doi.org/10.1002/9783527628704.ch1.

  22. Raju, I.S. and O'Brien, T.K., Fracture Mechanics Concepts, Stress Fields, Strain Energy Release Rates, Delamination Initiation and Growth Criteria, in Delamination Behavior of Composites, Elsevier, pp. 3-27, 2008, https://doi.org/10.1533/9781845694821.L3.

  23. Rourke, J.P., Pandey, P.A., Moore, J.J., Bates, M., Kinloch, I.A., Young, R.J., and Wilson, N.R., The Real Graphene Oxide Revealed: Stripping the Oxidative Debris from the Graphene-like Sheets, Angewandte Chemie International Edition, vol. 50, no. 14, pp. 3173-3177, 2011, https://doi.org/10.1002/ anie.201007520.

  24. Salehi-Khojin, A., Stone, J.J., and Zhong, W.-H., Improvement of Interfacial Adhesion between UHMWPE Fiber and Epoxy Matrix Using Functionalized Graphitic Nanofibers, J. Compos. Mater., vol. 41, no. 10, pp. 1163-1176, 2007, https://doi.org/10.1177/0021998306067301.

  25. Shen, X.-J., Meng, L.-X., Yan, Z.-Y., Sun, C.-J., Ji, Y.-H., Xiao, H.-M., and Fu, S.-Y., Improved Cryogenic Interlaminar Shear Strength of Glass Fabric/Epoxy Composites by Graphene Oxide, Composites Part B: Engineering, vol. 73, pp. 126-131, 2015, https://doi.org/10.1016/jxompositesb.2014.12.023.

  26. Siddiqui, N.A., Li, E.L., Sham, M.-L., Tang, B.Z., Gao, S.L., Mader, E., and Kim, J.-K., Tensile Strength of Glass Fibers with Carbon Nanotube-Epoxy Nanocomposite Coating: Effects of CNT Morphology and Dispersion State, Composites Part A: Appl. Sci. Manuf., vol. 41, no. 4, pp. 539-548, 2010, https://doi.org/10.1016/j.compositesa.2009.12.011.

  27. Siddiqui, N.A., Sham, M.-L., Tang, B.Z., Munir, A., and Kim, J.-K., Tensile Strength of Glass Fibers with Carbon Nanotube-Epoxy Nanocomposite Coating, Composites Part A: Appl. Sci. Manuf., vol. 40, no. 10, pp. 1606-1614, 2009, https://doi.org/10.1016/j.compositesa.2009.07.005.

  28. Soutis, C., Fiber Reinforced Composites in Aircraft Construction, Progr. Aerospace Sci., vol. 41, no. 2, pp. 143-151, 2005, https://doi.org/10.1016/j.paerosci.2005.02.004.

  29. Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., and Ruoff, R.S., Graphene-Based Composite Materials, Nature, vol. 442, no. 7100, pp. 282-286, 2006, https://doi.org/10.1038/nature04969.

  30. Subhani, T., Latif, M., Ahmad, I., Rakha, S.A., Ali, N., and Khurram, A.A., Mechanical Performance of Epoxy Matrix Hybrid Nanocomposites Containing Carbon Nanotubes and Nanodiamonds, Mater. Design, vol. 87, pp. 436-444, 2015, https://doi.org/10.1016/j.matdes.2015.08.059.

  31. Umer, R., Li, Y., Dong, Y., Haroosh, H.J., and Liao, K., The Effect of Graphene Oxide (GO) Nanoparticles on the Processing of Epoxy/Glass Fiber Composites Using Resin Infusion, Int. J. Adv. Manuf. Technol., vol. 81, nos. 9-12, pp. 2183-2192, 2015, https://doi.org/10.1007/s00170-015-7427-1.

  32. Varga, C., Miskolczi, N., Bartha, L., and Lipoczi, G., Improving the Mechanical Properties of Glass-Fiber-Reinforced Polyester Composites by Modification of Fiber Surface, Mater. Design, vol. 31, no. 1, pp. 185-193, 2010, https://doi.org/10.1016/j.matdes.2009.06.034.

  33. Vassilopoulos, A.P. and Keller, T., Fatigue of Fiber-Reinforced Composites, Springer London, pp. 1-23, 2011, https://doi.org/10.1007/978-1-84996-181-3.

  34. Vitorino, L.S. and Orefice, R.L., Layer-by-Layer Technique Employed to Construct Multitask Interfaces in Polymer Composites, Polimeros, vol. 27, no. 4, pp. 330-338, 2017, https://doi.org/10.1590/0104- 1428.15616.

  35. Yu, Z., Wang, Z., Li, H., Teng, J., and Xu, L., Shape Memory Epoxy Polymer (SMEP) Composite Mechanical Properties Enhanced by Introducing Graphene Oxide (GO) into the Matrix, Materials, vol. 12, no. 7, p. 1107, 2019, https://doi.org/10.3390/ma12071107.


Articles with similar content:

COMPUTATIONAL AND EXPERIMENTAL INVESTIGATION ON THERMAL INSULATION CAPABILITIES OF RICE-HUSK FILLED EPOXY COMPOSITES
Computational Thermal Sciences: An International Journal, Vol.4, 2012, issue 2
Arun Kumar Rout, Alok Satapathy
SIMPLIFIED BUCKLING ANALYSIS OF STIFFENED LAMINATED SANDWICH PLATES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.10, 2019, issue 1
Husam Al Qablan, Hazim M. Dwairi, Samer Rabab'ah, Omar Al Hattamleh
A COMPARATIVE STUDY OF THE MECHANICAL PROPERTIES OF GLASS−POLYESTER COMPOSITES FILLED WITH INDUSTRIAL WASTES
Composites: Mechanics, Computations, Applications: An International Journal, Vol.5, 2014, issue 4
Arun Kumar Rout, Subhrajit Ray
A SIMPLE MIXED FINITE ELEMENT MODEL FOR COMPOSITE BEAMS WITH PARTIAL INTERACTION
Composites: Mechanics, Computations, Applications: An International Journal, Vol.11, 2020, issue 3
Daniele Baraldi
INFLUENCE OF TITANIUM-COATED (B4C + SiC) PARTICLES ON ELECTRIC DISCHARGE MACHINING OF AA7050 HYBRID COMPOSITES
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.20, 2016, issue 2
J. Devaraj, P. K. Giridharan, Ranjith Rajamanickam