图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
合成材料:力学,计算和应用
ESCI SJR: 0.193 SNIP: 0.497 CiteScore™: 0.39

ISSN 打印: 2152-2057
ISSN 在线: 2152-2073

合成材料:力学,计算和应用

DOI: 10.1615/CompMechComputApplIntJ.2019026998
pages 253-272

NONLINEAR BEHAVIOR OF MASONRY WALLS: FE, DE, AND FE/DE MODELS

Daniele Baraldi
Università IUAV di Venezia, Dorsoduro 2206, 30123, Venice, Italy
Claudia Brito de Carvalho Bello
Università IUAV di Venezia, Dorsoduro 2206, 30123, Venice, Italy
Antonella Cecchi
Department of Architecture Construction Conservation (DACC), University IUAV of Venice, Dorsoduro 2206, Venice, 30123, Venice, Italy
Emilio Meroi
Università IUAV di Venezia, Dorsoduro 2206, 30123, Venice, Italy
Emanuele Reccia
University of Cagliari

ABSTRACT

Nonlinear behavior of masonry panels is a topic of great interest in the civil engineering and architecture fields. Several numerical approaches may be found in the literature. Here, three different models are presented and compared to investigate nonlinear behavior of in-plane loaded masonry walls: Discrete Element (DE) model, combined Finite/Discrete Element (FE/DE) model, Finite Element model based on a total rotating strain smeared crack approach (FE-TRSCM). Hence, analysis of masonry is carried out at different scales to compare reliability and application fields of the models. The DE and FE/DE models adopt a micromodeling strategy based on discrete cracks, blocks modeled as independent bodies and mortar joints as elastoplastic Mohr–Coulomb interfaces. These approaches already turned out to be in good agreement for in-plane nonlinear analysis. Here, the FE/DE model adopts hypothesis of infinitely resistant and deformable blocks, with cracks occurring only along mortar joints. Deformability is assumed in the triangular FE domain discretization and embedded crack elements may be activated whether tensile or shear strength is reached. The FE-TRSCM follows a macromodeling approach based on the smeared crack theory, often adopted for concrete. Masonry is modeled as a homogeneous material, with a yield criterion based on fracture energy accounting for masonry softening response on compression and tension. Three approaches are compared and calibrated by reproducing experimental tests on masonry panels in compression and under an increasing shear action. The parametric analyses show the capacity and limit of local micromodels or continuous diffused model to represent masonry behavior.

REFERENCES

  1. Addessi, D. and Sacco, E., A Multiscale Enriched Model for the Analysis of Masonry Panels, Int. J. Solids Struct., vol. 49, no. 6, pp. 865-880, 2012.

  2. Bacigalupo, A. and Gambarotta, L., Nonlocal Computational Homogenization of Periodic Masonry, Int. J. Multiscale Comput. Eng., vol. 9, no. 5, pp. 565-578.

  3. Baraldi, D. and Cecchi, A., A Full 3D Rigid Block Model for the Collapse Behavior of Masonry Walls, Eur. J. Mech. A/Solids, vol. 64, pp. 11-28, 2017a.

  4. Baraldi, D. and Cecchi, A., Discrete Approaches for the Nonlinear Analysis of In-Plane Loaded Masonry Walls: Molecular Dynamic and Static Algorithm Solutions, Eur. J. Mech. A/Solids, vol. 57, pp. 165-177, 2016.

  5. Baraldi, D. and Cecchi, A., Discrete Element Model for In-Plane Loaded Viscoelastic Masonry, Int. J. Multiscale Comput. Eng., vol. 12, no. 2, pp. 155-175, 2014.

  6. Baraldi, D. and Cecchi, A., Discrete Model for the Collapse Behavior of Unreinforced Random Masonry Walls, Key Eng. Mater., vol. 747, pp. 3-10, 2017b.

  7. Baraldi, D., Reccia, E., and Cecchi, A., DEM & FEM/DEM Models for Laterally Loaded Masonry Walls, COMPDYN 2015.

  8. Baraldi, D., Reccia, E., and Cecchi, A., In-Plane Loaded Masonry Walls: DEM and FEM/DEM Models. A Critical Review, Meccanica, vol. 53, no. 7, pp. 1613-1628, 2018. DOI: 10.1007/s11012-017-0704-3.

  9. Baraldi, D., Reccia, E., Cazzani, A., and Cecchi, A., Comparative Analysis of Numerical Discrete and Finite Element Models: The Case of In-Plane Loaded Periodic Brickwork, Compos. Mech. Comput. Appl. Int. J., vol. 4, pp. 319-344, 2013.

  10. Bertolesi, E., Milani, G., and Lourenjo, P.B., Implementation and Validation of a Total Displacement Nonlinear Homogenization Approach for In-Plane Loaded Masonry, Comput. Struct., vol. 176, pp. 13-33, 2016.

  11. Cecchi, A. and Sab, K., A Comparison between a 3D Discrete Model and Two Homogenized Plate Models for Periodic Elastic Brickwork, Int. J. Solids Struct., vol. 41, pp. 2259-2276, 2004.

  12. Cundall, P.A. and Hart, R.D., Development of Generalized 2-D and 3-D Distinct Element Programs for Modeling Jointed Rock, ITASCA Consulting Group, Final Report, 1985.

  13. Cundall, P.A. and Hart, R.D., Numerical Modeling of Discontinua, Eng. Comput., vol. 9, no. 2, pp. 101-113, 1992.

  14. Cundall, P.A., A Computer Model for Simulating Progressive Large Scale Movements in Blocky Rock Systems, Symp. of International Society of Rock Mechanics, Nancy, France, 1971.

  15. da Porto, F., Guidi, G., Garbin, E., and Modena, C., In-Plane Behavior of Clay Masonry Walls: Experimental Testing and Finite-Element Modeling, J. Struct. Eng., vol. 136, no. 11, pp. 1379-1392, 2010.

  16. De Bellis, M.L. and Addessi, D., A Cosserat Based Multiscale Model for Masonry Structures, Int. J. Multiscale Comput. Eng., vol. 9, no. 5, pp. 543-563, 2011.

  17. de Borst, R. and Nauta, P., Non-Orthogonal Cracks in a Smeared Finite Element Model, Eng. Comput., vol. 2, pp. 35-46, 1985.

  18. De Buhan, P. and de Felice, G., A Homogenization Approach to the Ultimate Strength of Brick Masonry, J. Mech. Phys. Solids, vol. 45, no. 7, pp. 1085-1104, 1997.

  19. de Carvalho Bello, C.B., Cecchi A., Ghiassi B., Meroi E., and Oliveira D.V., Masonry Panels Strengthened with NFRCM: Numerical Analyses, Constr. Build. Mater., submitted, 2019.

  20. de Carvalho Bello, C.B., Cecchi, A., Meroi, E., and Oliveira, D.V., Experimental and Numerical Investigations on the Behavior of Masonry Walls Reinforced with an Innovative Sisal FRCM System, Key Eng. Mater., vol. 747, pp. 190-195, 2017.

  21. European Committee for Standardization, Methods of Test for Mortar for Masonry. Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar, Rep. EN 1015-11, 2007.

  22. European Committee for Standardization, Methods of Test for Masonry. Part 1: Determination of Compressive Strength, Rep. EN 1052-1, 2001.

  23. European Committee for Standardization, Methods of Test for Masonry. Part 3: Determination of Initial Shear Strength, Rep. EN 1052-3, 2002.

  24. European Committee for Standardization, Methods of Test for Masonry. Part 5: Determination of Bond Strength by the Bond Wrench Method, Rep. EN 1052-5, 2005.

  25. Gattulli, V., Lampis, G., Marcari, G., and Paolone, A., Simulations of FRP Reinforcement in Masonry Panels and Application to a Historic Fajade, Eng. Struct., vol. 75, pp. 604-618, 2014.

  26. Ghiassi, B., Oliveira, D.V., Lourenjo, P.B., and Marcari, G., Numerical Study of the Role of Mortar Joints in the Bond Behavior of FRP-Strengthened Masonry, Compos., Part B, Eng., vol. 46, pp. 21-30, 2013.

  27. Haach, V.G., Vasconcelos, G., and Lourenjo, P.B., Study of the Behavior of Reinforced Masonry Wallets Subjected to Diagonal Compression through Numerical Modeling, 9th Int. Masonry Conf., Guimaraes, Portugal, 2014.

  28. Lemos, J.V., Discrete Element Modeling of Masonry Structures, Int. J. Archit. Herit., vol. 1, pp. 190-213, 2007.

  29. Lourenjo, P.B. and Rots, J.G., Multisurface Interface Model for Analysis of Masonry Structures, J. Eng. Mech., vol. 123, no. 7, pp. 660-668, 1997.

  30. Lourenjo, P.B., Rots, J.G., and Blaauwendraad, J., Continuum Model for Masonry: Parameter Estimation and Validation, J. Struct. Eng. ASCE, vol. 124, no. 6, pp. 642-652, 1998.

  31. Lourenjo, P.B., Rots, J.G., and Blaauwendraad, J., Two Approaches for the Analysis of Masonry Structures: Micro and Macromodeling, Heron, vol. 40, no. 4, 1995.

  32. Luciano, R. and Sacco, E., Homogenization Technique and Damage Model for Old Masonry Material, Int. J. Solids Struct., vol. 34, no. 24, pp. 3191-3208, 1997.

  33. Mahabadi, O.K., Grasselli, G., and Munjiza, A., Y-GUI: A Graphical User Interface and Preprocessor for the Combined Finite-Discrete Element Code, Y2D, Incorporating Material Inhomogeneity, Comput. Geosci., vol. 36, pp. 241-252, 2010.

  34. Mahabadi, O.K., Lisjak, A., Munjiza, A., and Grasselli, G., Y-Geo: A New Combined Finite Discrete Element Numerical Code for Geomechanical Applications, Geomechanics, vol. 12, pp. 676-688, 2012.

  35. Miccoli, L., Oliveira, D.V., Silva, R.A., Muller, U., and Schueremans, L., Static Behavior of Rammed Earth: Experimental Testing and Finite Element Modeling, Mater. Struct., vol. 48, no. 10, pp. 3443-3456, 2015.

  36. Milani, G., Simple Homogenization Model for the Nonlinear Analysis of In-Plane Loaded Masonry Walls, Comput. Struct., vol. 89, pp. 1586-1601, 2011.

  37. Munjiza, A., Owen, D.R.J., and Bicanic, N., A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids, Eng. Comput., vol. 12, no. 2, pp. 145-174, 1995.

  38. Munjiza, A., The Finite/Discrete Element Method, Chichester, West Sussex, England: John Wiley and Sons, 2004.

  39. Page, A.W., Finite Element Model for Masonry, J. Struct. Div., vol. 104, pp. 1267-1285, 1978.

  40. Raijmakers, T.M. and Vermeltfoort, A.T., Deformation Controlled Meso Shear Tests on Masonry Piers, Report B-92-1156, TNO-BOUW/TU Eindhoven, Building and Construction Research, Eindhoven, Netherlands, 1992.

  41. Rashid, Y.R., Analysis of Prestressed Concrete Pressure Vessels, Nucl. Eng. Des., vol. 7, no. 4, 334-355, 1986.

  42. Reccia, E., Cazzani, A., and Cecchi, A., FEM-DEM Modeling for Out-of-Plane Loaded Masonry Panels: A Limit Analysis Approach, Open Civ. Eng. J., vol. 6, no. 1, pp. 231-238, 2012.

  43. Rots, J.G. and Blaauwendraad, J., Crack Models for Concrete: Discrete or Smeared, Fixed, Multi-Directional or Rotating, Heron, vol. 34, no. 1, pp. 1-59, 1989.

  44. Salerno, G. and De Felice, G., Continuum Modeling of Periodic Brickwork, Int. J. Solids Struct., vol. 46, no. 5, pp. 1251-1267, 2009.

  45. Smoljanovic, H., Nikolic, Z., and Zivaljic, N., A Combined Finite-Discrete Numerical Model for Analysis of Masonry Structures, Eng. Fract. Mech., vol. 136, pp. 1-14, 2015.

  46. Smoljanovic, H., Zivaljic, N., and Nikolic, Z., A Combined Finite-Discrete Element Analysis of Dry Stone Masonry Structures, Eng. Struct., vol. 52, pp. 89-100, 2013.

  47. Stefanou, I., Sulem, J., and Vardoulakis, I., Three-Dimensional Cosserat Homogenization of Masonry Structures: Elasticity, Acta Geotech., vol. 3, pp. 71-83, 2008.

  48. TNO DIANA, User's Manual-Release Dev, accessed from https://dianafea.com/manuals/d94/Diana.html, 2010.

  49. Wang, X., Ghiassi, B., Oliveira, D.V., and Lam, C.C., Modeling the Nonlinear Behavior of Masonry Walls Strengthened with Textile Reinforced Mortars, Eng. Struct., vol. 134, pp. 11-24, 2017.


Articles with similar content:

DISCRETE ELEMENT MODEL FOR IN-PLANE LOADED VISCOELASTIC MASONRY
International Journal for Multiscale Computational Engineering, Vol.12, 2014, issue 2
Daniele Baraldi, Antonella Cecchi
A COSSERAT BASED MULTI-SCALE MODEL FOR MASONRY STRUCTURES
International Journal for Multiscale Computational Engineering, Vol.9, 2011, issue 5
Maria Laura De Bellis, Daniela Addessi
A MODEL FOR COMPOSITE BRICKWORK-LIKE MATERIALS BASED ON DISCRETE ELEMENT PROCEDURE: SENSITIVITY TO DIFFERENT STAGGERED TIERS
Composites: Mechanics, Computations, Applications: An International Journal, Vol.3, 2012, issue 1
Antonella Cecchi
VISCOELASTIC PLASTIC MODEL AND EXPERIMENTAL VALIDATION FOR A GRANULAR ENERGETIC MATERIAL
International Journal of Energetic Materials and Chemical Propulsion, Vol.13, 2014, issue 4
Arnaud Frachon, Didier Picart, Abdelkibir Benelfellah, Michael Caliez, Michel Gratton
FROM MICRO- TO MACROMODELS FOR IN-PLANE LOADED MASONRYWALLS: PROPOSITION OF A MULTISCALE APPROACH
International Journal for Multiscale Computational Engineering, Vol.11, 2013, issue 2
Antonella Cecchi, Alessia Vanin