图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
多孔介质专题评论
ESCI SJR: 0.277 SNIP: 0.52 CiteScore™: 1.3

ISSN 打印: 2151-4798
ISSN 在线: 2151-562X

多孔介质专题评论

DOI: 10.1615/SpecialTopicsRevPorousMedia.2020031749
pages 287-295

POROUS SILICON SYNTHESIS TO PRODUCE NANOSTRUCTURES AND ITS USE AS A TEMPLATE TO CONFINE MALACHITE GREEN

Pushpendra Kumar
Department of Physics, Manipal University Jaipur, 303007, Rajasthan, India
Rohit Upadhyay
Department of Mechanical Engineering, Manipal University Jaipur, 303007, Rajasthan, India
Ronak Goyal
Department of Mechanical Engineering, Manipal University Jaipur, 303007, Rajasthan, India
Peter Lemmens
Institute for Condensed Matter Physics and Lab. for Emerging Nanometrology (LENA), TU Braunschweig, D-38106 Braunschweig, Germany
Rajendra P. Joshi
RI Instruments and Innovation India, Haldwani, 263139, Uttarakhand, India

ABSTRACT

Nanomaterials have been a topic of interest for nanoscience and nanotechnology, which is an ever-growing multidisci-plinary field of study, attracting tremendous interest, investment, and effort in research and development. Nanoporous materials are a subset of nanostructured materials and possess distinctive properties for several applications. Among the series of porous materials, porous silicon (PS) has been a material of great interest because of its easy synthesis by electrochemical methods and better control on physical properties, e.g., porosity, pore diameter, and length. In this work, the electrochemical method is used to produce PS of various physical properties in hydrofluoric acid (HF) based solution and these PS are used to make silicon (Si) nanoparticles. Further, the PS is used as a template to study the confinement effect on the optical properties of malachite green. Various spectroscopic techniques are used to study the properties of impregnated PS and Si nanoparticles. Spectroscopic and microscopic results were explained using quantum confinement phenomena. The Si nanoparticle is a prominent candidate for investigation and applications in luminescence display devices for their broader excitation spectra, in solar energy cells, bio-imaging, hydrogen generation, body armor in defense, and micro and integrated semiconductor devices.

REFERENCES

  1. Araujo-Andrade, C., Beltran, F.J.E., Sandoval, S.J., and Hernandez, J.G., Synthesis of Nanocrystalline Si Particles from a Solid-State Reaction during a Ball-Milling Process, Scripta Materialia, vol. 49, pp. 773-778, 2003.

  2. Bley, R.A., Kauzlarich, S.M., Davis, J.E., and Lee, H.W.H., Characterization of Silicon Nanoparticles Prepared from Porous Silicon, Chem. Mater., vol. 8, pp. 1881-1888, 1996.

  3. Bose, S., Ganayee, M.A., Mondal, B., Baidya, A., Chennu, S., Mohanty, J.S., and Pradeep, T., Synthesis of Silicon Nanoparticles from Rice Husk and Their Use as Sustainable Fluorophores for White Light Emission, ACS Sustainable Chem. Eng., vol. 6, pp. 6203-6210, 2018.

  4. Buuren, T.V., Dinh, L.N., Chase, L.L., Siekhaus, W.J., and Terminello, L.J., Changes in the Electronic Properties of SiNanocrystals as a Function of Particle Size, Phys. Rev. Lett., vol. 80, pp. 3803-3806, 1998.

  5. Erogbogbo, F., Lin, T., Tucciarone, P.M., LaJoie, K.M., Lai, L., Patki, G.D., Prasad, P.N., and Swihart, M.T., Nano Lett., vol. 13, pp. 451-456,2013.

  6. Funada, T., Hirose, T., Tamai, N., and Yao, H., Organic Nanoparticles of Malachite Green with Enhanced Far-Red Emission: Size-Dependence of Particle Rigidity, Phys. Chem. Chem. Phys, vol. 17, pp. 11006-11013,2015.

  7. Ghorbani, M., Salimpour, M.R., and Vafai, K., Microchannel Thermal Performance Optimization Utilizing Porous Layer Configurations, Int. J. Heat Mass Transf, vol. 133, pp. 62-72, 2019.

  8. Gupta, V.K., Carrottb, P.J.M., Carrottb, M.M.L.R., and Suhas, Low-Cost Adsorbents: Growing Approach to Wastewater Treatment-A Review, Environ. Sci. Technol., vol. 39, pp. 783-842, 2009.

  9. Huber, P., Soft Matter in Hard Confinement: Phase Transition Thermodynamics, Structure, Texture, Diffusion and Flow in Nanoporous Media, J. Phys..: Condensed Matter, vol. 27, article ID 103102, 2015.

  10. Ivanir, N.M., Bhunia, S.K., Raz, N., Segal, E., and Jelinek, R., Synthesis and Characterization of a Nanostructured Porous Silicon/Carbon Dot-Hybrid for Orthogonal Molecular Detection, NPG Asia Mat., vol. 10, p. e463, 2018.

  11. Iwayama, T.S., Nakao, S., and Saitoh, K., Visible Photoluminescence in Si+-Implanted Thermal Oxide Films on Crystalline Si, Appl. Phys. Lett., vol. 65, pp. 1814-1816,1994.

  12. Khanafer, K. and Vafai, K., Applications of Nanofluids in Porous Medium, J. Therm. Anal. Calor., vol. 135, pp. 1479-1492,2019.

  13. Kinloch, A., Mohammed, R., Taylor, A., Eger, C., Sprenger, S., and Egan, D., The Effect of Silica Nano Particles and Rubber Particles on the Toughness of Multiphase Thermosetting Epoxy Polymers, J. Mat. Sci., vol. 40, pp. 5083-5086, 2005.

  14. Kumar, P., Effect of Silicon Crystal Size on Photoluminescence Appearance in Porous Silicon, ISRNNanotech., vol. 2011, article ID 163168,2011.

  15. Kumar, P., Hofmann, T., Knorr, K., Huber, P., Scheib, P., and Lemmens, P., Tuning the Pore Wall Morphology of Mesoporous Silicon from Branchy to Smooth, Tubular by Chemical Treatment, J. Appl. Phys., vol. 103, article ID 024303,2008.

  16. Kumar, P. and Lemmens, P., Photoluminescence Quenching and Confinement Effects in Mesoporous Silicon: Photoluminescence, Optical and Electrical Studies, RSC Adv., vol. 5, pp. 91134-91139, 2015.

  17. Kumar, P., Lemmens, P., Ghosh, M., Ludwig, F., and Schilling, M., Effect of HF Concentration on Physical and Electronic Properties of Electrochemically Formed Nanoporous Silicon, J. Nanomat., vol. 2009, article ID 728957,2009.

  18. Leconte, Y., Marie, P., Portier, X., Lejeune, M., and Rizk, R., Combined Growth of Si Nanoparticles and Crystallized Silicon Layers at200C by Reactive Magnetron Sputtering, Mat. Sci. Eng.: B, vol. 101, pp. 194-198, 2003.

  19. Li, Y.Y., Cunin, F., Link, J.R., Gao, T., Betts, R.E., Reiver, S.-H., Chin, V., Bhatia, S.N., and Sailor, M.J., Polymer Replicas of Photonic Porous Silicon for Sensing and Drug Delivery Applications, Science, vol. 299, pp. 2045-2047,2003.

  20. Li, M., Hu, M., Zeng, P., Ma, S., Yan, W., and Qin, Y., Effect of Etching Current Density on Microstructure and NH3-Sensing Properties of Porous Silicon with Intermediate-Sized Pores, Electrochimica Acta, vol. 108, pp. 167-174, 2013.

  21. Moriarty, P., Nanostructured Materials, Rep. Prog. Phys., vol. 64, p. 297, 2001.

  22. Rafiq, S., Yadav, R., and Sen, P., Microviscosity inside a Nanocavity: A Femtosecond Fluorescence Up-Conversion Study of Malachite Green, J. Phys. Chem. B, vol. 114, pp. 13988-13994, 2010.

  23. Sood, A.K., Jayaram, K., and Muthu, D.V.S., Raman and High-Pressure Photoluminescence Studies on Porous Silicon, J. Appl. Phys, vol. 72, p. 4963, 1992.

  24. Szent-Gyorgyi, C., Schmidt, B.F., Creeger, Y., Fisher, G.W., Zakel, K.L., Adler, S., Fitzpatrick, J.A.J., Woolford, C.A., Yan, Q., Vasilev, K.V., Berget, P.B., Bruchez, M.P., Jarvik, J.W., and Waggoner, A., Fluorogen-Activating Single-Chain Antibodies for Imaging Cell Surface Proteins, Nature Biotech., vol. 26, pp. 235-240, 2008.

  25. Tian, Y., Liu, P., Wang, X., and Lin, H., Adsorption of Malachite Green from Aqueous Solutions onto Ordered Mesoporous Carbons, Chem. Eng. J, vol. 171, pp. 1263-1269, 2011.

  26. Vasic, M.R., Spruijt, E., Popovic, Z., Overgaag, K., Lagen, B.V., Grandidier, B., Vanmaekelbergh, D., Gutierrez, D.D., Cola, L.D., andZuilhof, H., Amine-Terminated Silicon Nanoparticles: Synthesis, Optical Properties and Their Use in Bioimaging, J. Mater. Chem., vol. 19, pp. 5926-5933, 2009.

  27. Voigt, E.M. and Tomlinson, R.H., The Determination of Pore Size Distribution and Surface Area from Adsorption Isotherms, Can. J Chem., vol. 33, pp. 215-231, 1954.

  28. Wu, M.H., Mu, R., Ueda, A., Henderson, D.O., and Vlahovic, B., Production of Silicon Quantum Dots for Photovoltaic Applications by Picosecond Pulsed Laser Ablation, Mat. Sci. Eng., vol. B116, pp. 273-277, 2005.

  29. Yamani, Z., Thompson, W.H., Hassan, L.A., and Nayfeh, M.H., Ideal Anodization of Silicon, Appl. Phys. Lett:., vol. 70, pp. 3404-3406,1997.

  30. Zhang, X., Neiner, D., Wang, S., Louie, A.V., and Kauzlarich, S.M., A New Solution Route to Hydrogen-Terminated Silicon Nanoparticles: Synthesis, Functionalization and Water Stability, Nanotech., vol. 18, article ID 095601, 2007.

  31. Zhang, X.G., Mechanism of Pore Formation on n-Type Silicon, J. Electrochem. Soc., vol. 138, no. 12, pp. 3750-3756, 1991.

  32. Zhang, Y., Lam, F.L.Y., Yan, Z.F., and Hu, X., Review of Kelvin's Equation and Its Modification in Characterization of Mesoporous Materials, Chinese J. Chem. Phys, vol. 19, article ID 102, 2006.

  33. Zywietz, U., Evlyukhin, A.B., Reinhardt, C., and Chichkov B.N., Laser Printing of Silicon Nanoparticles with Resonant Optical Electric and Magnetic Responses, Nature Comm., vol. 5, article ID 3402, 2014.


Articles with similar content:

Photoresponse of Metal-Porous Silicon-Silicon Structure
Journal of Porous Media, Vol.10, 2007, issue 7
Reza S. Dariani, M. Zare, Z. Bayindir, K. Robbie
ENERGY TECHNOLOGIES ENABLED BY NANOSCALE HEAT TRANSFER EFFECTS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Gang Chen
Thermoelectric Properties of Polymer-Semiconductor-Polymer Molecular Junction
International Heat Transfer Conference 15, Vol.48, 2014, issue
Huaqing Xie, Yuanyuan Wang
First-Principles Study on Electronic Band Structure and Optical Constants of Synthesized Si3Al(AsxP1-x) Alloys
International Heat Transfer Conference 15, Vol.42, 2014, issue
Jianyu Tan , Jiayue Yang, Linhua Liu
PASSIVATION OF POLYCRYSTALLINE SILICON BY HYDROGEN PLASMA : CHARACTERIZATION BY IMPEDANCE SPECTROSCOPY
High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, Vol.9, 2005, issue 2
D. Ballutaud, M. Nikravech, Jacques Amouroux, S. Darwiche, Daniel Morvan