图书馆订阅: Guest

ENTROPY GENERATION DUE TO PERISTALTIC FLOW OF CU−WATER NANOFLUID IN A TUBE THROUGH A POROUS SPACE UNDER EFFECT OF MAGNETIC FIELD AND HALL CURRENTS: APPLICATION OF BIOMEDICAL ENGINEERING

卷 10, 册 3, 2019, pp. 259-289
DOI: 10.1615/SpecialTopicsRevPorousMedia.2018027472
Get accessGet access

摘要

This paper deals with an analysis of entropy generation due to the peristaltic induced flow of viscous incompressible electrically conducting nanofluid in a tube containing a porous medium under the influence of a uniform transverse magnetic field and Hall currents. The pure water is used as the base fluid. Copper (Cu) nanoparticles are considered with the base fluid. The tube is filled with a homogeneous porous medium. Darcy's law is used to model the governing equations. The flow is investigated in the wave frame of reference moving with constant velocity with the wave. Long wavelength and low Reynolds number approximations are utilized in problem formulation. Exact analytical solutions are obtained for the axial velocity, temperature, pressure gradient, stream function, entropy generation, and Bejan number. The graphical analysis is carried out to examine the impacts of sundry parameters on flow quantities of interest. Comparative study is also made for Cu−water with pure water. The results presented reveal that the axial velocity and temperature of Cu−water nanofluid are increasing functions of the Hall parameter. Copper nanoparticles prove an effective coolant since they sufficiently reduce the fluid temperature in the tube. The trapping fluid can be increased and the central line axial velocity can be raised to a considerable extent by increasing the Darcy number. The nanoparticle volume fraction also influences the size of the trapped bolus. This model finds its applications in biomedical engineering and artificial bioprocessors owing to their vast and novel applications in modern drug delivery systems.

参考文献
  1. Abbas, M.A., Yanqin, B., Rashidi, M.M., and Bhatti, M.M., Analysis of Entropy Generation in the Flow of Peristaltic Nanofluids in Channels with Compliant Walls, Entropy, vol. 18, pp. 1-13,2016.

  2. Abbasi, F.M., Hayat, T., and Ahmad, B., Peristalsis of Silver-Water Nanofluid in the Presence of Hall and Ohmic Heating Effects, J. Mol. Liq., vol. 207, pp. 248-255,2015a.

  3. Abbasi, F.M., Hayat, T., and Ahmad, B., Peristaltic Transport of Copper-Water Nanofluid Saturating Porous Medium, Physica E, vol. 67, pp. 47-53,2015b.

  4. Abbasi, F.M., Hayat, T., and Alsaedi, A., Peristaltic Transport of Magneto-Nanoparticles Submerged in Water: Model for Drug Delivery System,PhysicaE, vol. 68, pp. 123-132,2015c.

  5. Abbasi, F.M., Hayat, T., Shehzad, S.A., Alsaadi, F., and Altoaibi, N., Hydromagnetic Peristaltic Transport of Copper-Water Nanofluid with Temperature-Dependent Effective Viscosity, Particuology, vol. 27, pp. 133-140,2016.

  6. Abdelmaboud, Y. and Mekheimer, K.S., Non-Linear Peristaltic Transport of a Second-Order Fluid through a Porous Medium, Appl. Math. Model., vol. 35, pp. 2695-2710,2011.

  7. Abdelsalam, S. and Bhatti, M.M., The Study of Non-Newtonian Nanofluid with Hall and Ion Slip Effects on Peristaltically Induced Motion in a Non-Uniform Channel, R. Soc. Chem. Adv., vol. 8, pp. 7904-7915,2018.

  8. Abo-Eldahab, E.M., Barakat, E.I., and Nowar, Kh., Effects of Hall and Ion-Slip Currents on Peristaltic Transport of a Couple Stress Fluid, Int. J. Appl. Math. Phys., vol. 2, pp. 145-157,2010.

  9. Akbar, N.S. and Butt, A.W., Entropy Generation Analysis for the Peristaltic Flow of Cu-Water Nanofluid in a Tube with Viscous Dissipation, J. Hydrodyn., vol. 29, no. 1,pp. 135-143,2017.

  10. Akbar, N.S., Entropy Generation and Energy Conversion Rate for the Peristaltic Flow in a Tube with Magnetic Field, Energy, vol. 82, pp. 23-30,2015a.

  11. Akbar, N.S., Entropy Generation Analysis for a CNT Suspension Nanofluid in Plumb Ducts with Peristalsis, Entropy, vol. 17, pp. 1411-1424,2015b.

  12. Akbar, N.S., Nadeem, S., Ghafoor, A., and Lee, C., Consequences of Nano Fluid on Peristaltic Flow in an Asymmetric Channel, Int. J. Basic Appl. Sci., vol. 12, pp. 75-96,2013.

  13. Akbar, N.S., Raza, M., and Ellahi, R., Peristaltic Flow with Thermal Conductivity of H2O+Cu Nanofluid and Entropy Generation, Results Phys., vol. 5,pp. 115-124,2015.

  14. Akbar, N.S., Nadeem, S., and Khan, Z.H., Numerical Simulation of Peristaltic Flow of a Carreau Nanofluid in an Asymmetric Channel, Alex. Eng. J., vol. 53, no. 1,pp. 191-197,2014.

  15. Akbar, N.S., Peristaltic Sisko Nano Fluid in an Asymmetric Channel, Appl. Nanosci., vol. 4, pp. 663-673,2014.

  16. Ali, N. and Hayat, T., Peristaltic Flow of a Micropolar Fluid in an Asymmetric Channel, Comput. Math. Appl., vol. 55, no. 4, pp. 589-608, 2008.

  17. Alsaedi, A., Ali, N., Tripathi, D., and Hayat, T., Peristaltic Flow of Couple Stress Fluid through Uniform Porous Medium, Appl. Math. Mech., vol. 35, no. 4, pp. 469-480,2014.

  18. Arqub, O.A., El-Ajou, A., Zhour, Z.A., and Momani, S., Multiple Solutions of Nonlinear Boundary Value Problems of Fractional Order: A New Analytic Iterative Technique, Entropy, vol. 16, pp. 471-493,2014.

  19. Asghar, S., Hussain, Q., and Alsaedi, A., Effects of Hall Current and Ion Slip in Peristalsis with Temperature-Dependent Viscosity, J. Aerosp. Eng., vol. 29, no. 4, p. 04016007-1,2016.

  20. Asghar, S., Hussain, Q., Hayat, T., and Alsaadi, F., Hall and Ion Slip Effects on Peristaltic Flow and Heat Transfer Analysis with Ohmic Heating, Appl. Math. Mech., vol. 35, pp. 1509-1524,2014.

  21. Bejan, A., A Study of Entropy Generation in Fundamental Convective Heat Transfer, J. Heat Transf., vol. 101, no. 4, pp. 718-725, 1979.

  22. Buongiorno, J., Convective Transport in Nanofluids, ASME J. Heat Transf., vol. 128, pp. 240-250,2006.

  23. Chaube, M.K., Pandey, S.K., and Tripathi, D., Slip Effect on Peristaltic Transport of Micropolar Fluid, Appl. Math. Sci., vol. 4, pp. 2105-2117,2010.

  24. Choi, S.U.S., Zhang, Z.G., Yu, W., Lockwood, E.F., and Grulke, F.A., Anomalously Thermal Conductivity Enhancement in Nanotube Suspensions, Appl. Phys. Lett., vol. 79, pp. 2252-2254,2001.

  25. Cimpean, D., Lungu,N., and Pop, I., A Problem of Entropy Generation in a Channel Filled with a Porous Medium, Creative Math. In/, vol. 17, pp. 357-362,2008.

  26. Cowling, T.G., Magnetohydrodynamics, New York: Interscience Publisher, 1957.

  27. Das, S., Chakraborty, S., Sensharma, A., and Jana, R.N., Entropy Generation Analysis for Magnetohydrodynamic Peristaltic Transport of Copper-Water Nanofluid in a Tube Filled with Porous Medium, Spec. Top. Rev. PorousMedia -Int. J., vol. 9,no. 2, pp. 1-22,2018.

  28. El Koumy, S.R., Barakat, E.I., and Abdelsalam, S.I., Hall and Transverse Magnetic Field Effects on Peristaltic Flow of a Maxwell Fluid through a Porous Medium, Global J. Pure Appl. Math., vol. 9, pp. 187-203,2013.

  29. El-Ajou, A., Arqub, O.A., and Al-Smadi, M., A General Form of the Generalized Taylor's Formula with Some Applications, Appl. Math. Comput., vol. 256, pp. 851-859,2015a.

  30. El-Ajou, A., Arqub, O.A., and Momani, S., Approximate Analytical Solution of the Nonlinear Fractional KDV-Burgers Equation: A New Iterative Algorithm, J. Comput. Phys., vol. 293, pp. 81-95,2015b.

  31. El-Ajou, A., Arqub, O.A., Momani, S., Baleanu, D., and Alsaedi, A., A Novel Expansion Iterative Method for Solving Linear Partial Differential Equations of Fractional Order, Appl. Math. Comput., vol. 257, pp. 119-133,2015c.

  32. Eldahab, E.A., Barakat, E.I., and Nowar, Kh., Hall and Ion Slip Effects on MHD Peristaltic Transport, Int. J. Appl. Math. Phys., vol. 2, pp. 113-123,2010.

  33. Eytan, O. andElad, D., Analysis of Intrauterine Fluid Motion Induced by Uterine Contraction, Bull. Math. Biol., vol. 61, pp. 221-238,1999.

  34. Eytan, O., Azem, F., Gull, I., Wolman, I., Elad, D., and Jaffa, A.L., The Mechanism of Hydrosalpinx in Embryo Implantation, Hum. Reprod., vol. 16, pp. 2662-2667,2001.

  35. Fung, F.C. and Yih, C.S., Peristaltic Transport, J. Appl. Mech., vol. 85, pp. 669-675,1968.

  36. Gad, N.S., Effect of Hall Currents on Interaction of Pulsatile and Peristaltic Transport Induced Flows of a Particle-Fluid Suspension, Appl. Math. Comput., vol. 217, pp. 4313-4320,2011.

  37. Gad, N.S., Effects of Hall Currents on Peristaltic Transport with Compliant Walls, Appl. Math.Comput., vol. 235, pp. 546-554, 2014.

  38. Hayat, T., Abbasi, F.M., Alsaedi, A., and Alsaadi, F., Hall and Ohmic Heating Effects on the Peristaltic Transport of a Carreau- Yasuda Fluid in an Asymmetric Channel, Z. Naturforsch. A, vol. 69, pp. 43-51,2014a.

  39. Hayat, T., Abbasi, F.M., and Alsaedi, A., Soret and Dufour Effects on Peristaltic Flow in an Asymmetric Channel, Arab. J. Sci. Eng., vol. 39, pp. 4341-4349,2014b.

  40. Hayat, T., Afsar, A., and Ali, N., Peristaltic transport of a Johnson-Segalman Fluid in an Asymmetric Channel, Math. Comput. Model., vol. 47, no. 3, pp. 380-400,2008.

  41. Hayat, T., Ali, N., and Asghar, S., Hall Effects on Peristaltic Flow of a Maxwell Fluid in a Porous Medium, Phys. Lett. A, vol. 363, pp. 397-403,2007.

  42. Hayat, T., Bibi, A., Yasmin, H., and Ahmed, B., Simultaneous Effects of Hall Current and Homogeneous/Heterogeneous Reactions on Peristalsis, J. Taiwan Inst. Chem. Eng., vol. 58, pp. 28-38,2016a.

  43. Hayat, T., Hina, S., and Ali, N., Simultaneous Effects of Slip and Heat Transfer on the Peristaltic Flow, Commun. Nonlinear Sci. Numer. Simul., vol. 15, pp. 1526-1537,2010.

  44. Hayat, T., Iqbal, R., Tanveer, A., and Alsaedi, A., Soret and Dufour Effects in MHD Peristalsis of Pseudoplastic Nanofluid with Chemical Reaction, J. Mol. Liq., vol. 220, pp. 693-706,2016b.

  45. Hayat, T., Shafique, M., Tanveer, A., and Alsaedi, A., Hall and Ion Slip Effects on Peristaltic Flow of Jeffrey Nanofluid with Joule Heating, J. Magn. Magn. Mater., vol. 407, pp. 51-59,2016c.

  46. Jyothi, B. and Rao, PK., Slip Effects on MHD Peristaltic Transport of a Williamson Fluid through a Porous Medium in a Symmetric Channel, J. Math. Comput. Sci., vol. 3,no. 5,pp. 1306- 1324,2013.

  47. Kakac, S. and Pramuanjaroenkij, A., Review of Convective Heat Transfer Enhancement with Nanofluids, Int. J. Heat Mass Transf., vol. 52, pp. 3187-3196,2009.

  48. Khan, A.A., Ellahi, R., Gulzar, M.M., and Sheikholeslami, M., Effects of Heat Transfer on Peristaltic Motion of Oldroyd Fluid in the Presence of Inclined Magnetic Field, J. Magn. Magn. Mater., vol. 372, pp. 97-106,2014.

  49. Kothandapani, M. and Prakash, J., Effects of Thermal Radiation Parameter and Magnetic Field on the Peristaltic Motion of Williamson Nanofluids in a Tapered Asymmetric Channel, Int. J. Heat Mass Transf., vol. 81, pp. 234-245,2015.

  50. Latham, T.W., Fluid Motion in a Peristaltic Pump, MS, Massachusetts Institute of Technology, Cambridge, 1966.

  51. Maiti, S. and Misra, J.C., Peristaltic Transport of a Couple Stress Fluid: Some Applications to Hemodynamics, J. Mech. Med. Biol., vol. 12, p. 1250048,2012.

  52. Maraj, E.N. and Nadeem, S., Theoretical Analysis of Entropy Generation in Peristaltic Transport of Nanofluid in an Asymmetric Channel, Int. J. Exergy, vol. 20, pp. 294-317,2016.

  53. Mishra, M. and Rao, A.R., Peristaltic Transport of a Newtonian Fluid in an Asymmetric Channel, Z. Angew. Math. Phys., vol. 54, pp. 532-550, 2003.

  54. Mody, V.V., Cox, A., Shah, S., Singh, A., Bevins, W., and Parihar, H., Magneticnanoparticle Drug Delivery Systems for Targeting Tumor, Appl. Nanosci., vol. 4, pp. 385-392,2014.

  55. Mustafa, M., Hina, S., Hayat, T., and Alsaedi, A., Slip Effects on the Peristaltic Motion of Nanofluid in a Channel with Wall Properties, J. Heat Transf., vol. 135, pp. 1-7,2013.

  56. Noreen, S., Alsaedi, A., and Hayat, T., Peristaltic Flow of Pseudoplastic Fluid in an Asymmetric Channel, J. Appl. Mech., vol. 79, p. 054501,2012.

  57. Nowar, Kh., Abo-Eldahab, E.M., and Barakat, E.I., Peristaltic Pumping of Johnson-Segalman Fluid in an Asymmetric Channel under the Effect of Hall and Ion-Slip Currents, J. Appl. Comput. Math., vol. 1, no. 102, pp. 1-6,2012.

  58. Oztop, H.F. and Abu-Nada, E., Numerical Study of Natural Convection in Partially Heated Rectangular Enclosures Filled with Nanofluids, Int. J. Heat Fluid Flow, vol. 29, pp. 1326-1336,2008.

  59. Paoletti, S., Rispoli, F., and Sciubba, E., Calculation ofExergetic Losses in Compact Heat Exchanger Passages, ASMEAdv. Energy Syst., vol. 10, pp. 21-29,1989.

  60. Ramesh, K., Effects of Slip and Convective Conditions on the Peristaltic Flow of Couple Stress Fluid in an Asymmetric Channel through Porous Medium, Comput. Meth. Prog. Biomed., vol. 135, pp. 1-14,2016.

  61. Rani, P. and Sarojamma, G., Peristaltic Transport of a Casson Fluid in an Asymmetric Channel, Australas. Phys. Eng. Sci. Med., vol. 27, no. 2, pp. 49-59, 2004.

  62. Ranjit,N.K. and Shit, G.C., Entropy Generation on Electro-Osmotic Flow Pumping by a Uniform Peristaltic Wave under Magnetic Environment, Energy, vol. 128, no. 1,pp. 649-660,2017.

  63. Rashidi, M.M., Bhatti, M.M., Abbas, M.A., and Ali, M.E.S., Entropy Generation on MHD Blood Flow of Nanofluid due to Peristaltic Waves, Entropy, vol. 18, no. 117, pp. 1-16,2016.

  64. Reddy, M.G., Reddy, K.V., and Makinde, O.D., Hydromagnetic Peristaltic Motion of a Reacting and Radiating Couple Stress Fluid in an Inclined Asymmetric Channel Filled with a Porous Medium, Alex. Eng. J., vol. 55, pp. 1841-1853,2016.

  65. Sarkar, B.C., Das, S., Jana, R.N., and Makinde, O.D., Magnetohydrodynamic Peristaltic Flow of Nanofluids in a Convectively Heated Vertical Asymmetric Channel in Presence of Thermal Radiation, J. Nanofluids, vol. 4, pp. 1-13,2015.

  66. Shapiro, A.H., Jaffrin, M.Y., and Weinberg, S.L., Peristaltic Pumping with Long Wavelengths at Low Reynolds Number, J. Fluid Mech., vol. 37, pp. 799-825,1969.

  67. Shapiro, A.H., Pumping and Retrograde Diffusion in Peristaltic Waves, Proc. Workshop Ureteral Reftm Children, Nat. Acad. Sci., Washington, DC, 1967.

  68. Souidi, F., Ayachi, K., and Benyahia,N., Entropy Generation Rate for a Peristaltic Pump, J. Non-Equilibrium Thermodyn., vol. 34, no. 2, pp. 171-194,2009.

  69. Srinivas, S. and Kothandapani, M., Peristaltic Transport in an Asymmetric Channel with Heat Transfer-A Note, Int. Commun. Heat Mass Transf., vol. 35, pp. 514-522,2008.

  70. Tripathi, D. and Beg, O.A., A Numerical Study of Oscillating Peristaltic Flow of Generalized Maxwell Viscoelastic Fluids through a Porous Medium, Transp. Porous Media, vol. 95, no. 2, pp. 337-348,2012.

  71. Vafai, K., Khan, A.A., Sajjad, S., and Ellahi, R., The Study of Peristaltic Motion of Third Grade Fluid under the Effects of Hall Current and Heat Transfer, Z. Naturforsch., vol. 70, pp. 281-293,2015.

对本文的引用
  1. Hamad Eyad M., Khaffaf Aseel, Yasin Omar, Abu El-Rub Ziad, Al-Gharabli Samer, Al-Kouz Wael, Chamkha Ali J., Review of Nanofluids and Their Biomedical Applications, Journal of Nanofluids, 10, 4, 2021. Crossref

  2. Job Victor M., Sankar Alana, Gunakala Sreedhara Rao, Selvam R. Panneer, Reddy N. Bhaskar, Numerical Study of Two-Phase Peristaltic MHD Nanofluid Flows in a Flexible Tube with a Porous Peripheral Layer and Thermal Radiation, International Journal of Applied and Computational Mathematics, 8, 2, 2022. Crossref

将发表的论文

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain