图书馆订阅: Guest

CRYSTAL PRECIPITATION AND DISSOLUTION IN A POROUS MEDIUM: EVOLVING MICROSTRUCTURE AND PERFORATED SOLID MATRIX

卷 10, 册 4, 2019, pp. 305-321
DOI: 10.1615/SpecialTopicsRevPorousMedia.2019029274
Get accessGet access

摘要

In this article, we derive an upscaled model for crystal precipitation and dissolution in a saturated porous medium with a perforated solid matrix. We model the solid matrix itself at the pore scale as a porous medium. Hence, we consider at the pore scale a Darcy–Stokes system, where the Beavers–Joseph boundary condition is proposed at the corresponding interface. By asymptotic expansions we derive an upscaled model describing the process via Darcy's law, a transport equation, and corresponding effective coefficients given by the evolution of the microstructure. Weak solvability of the upscaled model is also investigated.

参考文献
  1. Arbogast,T. and Lehr, H.L.,HomogenizationofaDarcy-StokesSystemModelingVuggy Porous Media, Comput. Geosci, vol. 10, no. 3, pp. 291-302,2006.

  2. Arqub, O.A. and Al-Smadi, M., Numerical Algorithm for Solving Time-Fractional Partial Integrodifferential Equations Subject to Initial and Dirichlet Boundary Conditions, Numer. Meth. Part. D. E, vol. 34, no. 5, pp. 1577-1597,2018a.

  3. Arqub, O.A., Odibat, Z., and Al-Smadi, M., Numerical Solutions of Time-Fractional Partial Integrodifferential Equations of Robin Functions Types inHilbert Space with Error Bounds and Error Estimates, Nonlin. Dyn, vol. 94, no. 3, pp. 1819-1834,2018b.

  4. Beavers, G.S. and Joseph, D.D., Boundary Conditions at aNaturally Permeable Wall, J. FluidMech, vol 30, no. 1, pp. 197-207, 1967.

  5. Bringedal, C., Berre, I., Pop, I.S., and Radu, F.A., Upscaling of Non-Isothermal Reactive Porous Media Flow with Changing Porosity, Trans. Porous Media, vol. 114, no. 2, pp. 371-393,2016.

  6. Bringedal, C. and Kumar, K., Effective Behavior near Clogging in Upscaled Equations for Non-Isothermal Reactive Porous Media Flow, Trans. Porous Media, vol. 120, no. 3, pp. 553-577,2017.

  7. Hornung,U., Homogenization and Porous Media, New-York, NY: Springer-Verlag, 1996.

  8. Jones, I.P., Low Reynolds Number Flow past a Porous Spherical Shell, Proc. Camb. Philos. Soc., vol 73, no. 1,pp. 231-238,1973.

  9. Knabner, P., van Duijn, C.J., and Hengst, S., An Analysis of Crystal Dissolution Fronts in Flows through Porous Media. Part 1: Compatible Boundary Conditions, Adv. Water Res., vol 76, no. 3, pp. 171-185,1995.

  10. Kumar, K., Neuss-Radu, M., and Pop, I.S., Homogenization of a Pore Scale Model for Precipitation and Dissolution in Porous Media, IMA J. Appl. Math, vol. 81, pp. 877-897,2014.

  11. Ladyzenskaja, O.A., Solonnikov, V.A., and Ural'ceva, N.N., Linear and Quasi-Linear Equations of Parabolic Type, Providence, RI: American Mathematical Society, 1968.

  12. Landa-Marban, D., Liu, N., Pop, I.S., Kumar, K., Pettersson, P., Bedtker, G., Skauge, T., and Radu, F.A., A Pore Scale Model for Permeable Biofilm: Numerical Simulations and Laboratory Experiments, Trans. Porous Media, vol. 127, no. 3, pp. 643-660, 2019. DOI: 10.1007/s11242-018-1218-8.

  13. Muntean, A. and van Noorden, T.L., Corrector Estimates for the Homogenization of a Locally Periodic Medium with Areas of Low and High Diffusivity, Euro. J. Appl. Math., vol. 24, no. 5, pp. 657-677,2013.

  14. Osher, S. andFedkiw, R.P., Level Set Methods: An Overview and Some Recent Results, J. Comput. Phys, vol. 169, no. 2, pp. 463-502,2001.

  15. Pop, I.S., Bogers, J., and Kumar, K., Analysis and Upscaling of a Reactive Transport Model in Fractured Porous Media with Nonlinear Transmission Condition, Viet. J. Math, vol. 45, no. 1, pp. 77-102,2017.

  16. Quarteroni, A.M. and Valli, A., Numerical Approximation of Partial Differential Equations, 1st ed., Berlin Heidelberg: Springer-Verlag, 1994.

  17. Ray, N., van Noorden, T.L., Radu, F.A., Friess, W., and Knabner, P., Drug Release from Collagen Matrices Including an Evolving Microstructure, ZAMMZ. Angew. Math. Mech, vol. 93, pp. 811-822,2013.

  18. Ray, N., Rupp, A., Schulz, R., and Knabner, P., Old, New Approaches Predicting the Diffusion in Porous Media, Trans. Porous Media, vol. 124, no. 3, pp. 811-822,2018.

  19. Saffman, P., on the Boundary Condition at the Surface of a Porous Medium, Stud. Appl. Math, vol. 50, pp. 93-101,1971.

  20. Schulz, R., Boundedness in a Biofilm-Chemotaxis Model in Evolving Porous Media, Math. Model. Anal., vol. 22, no. 6, pp. 852-869,2017.

  21. Schulz, R., Biofilm Modeling in Evolving Porous Media with Beavers-Joseph Condition, Z. Angew. Math. Mech., vol. 77, no. 5, pp. 1653-1677,2019.

  22. Schulz, R. and Knabner, P., Derivation and Analysis of an Effective Model for Biofilm Growth in Evolving Porous Media, Math. Meth. Appl. Sci, vol. 40, no. 8, pp. 2930-2948,2017a.

  23. Schulz, R. and Knabner, P., An Effective Model for Biofilm Growth Made by Chemotactical Bacteria in Evolving Porous Media, SIAMJ. Appl. Math, vol. 77, no. 5, pp. 1653-1677,2017b.

  24. Schulz, R., Ray, N., Frank, F., Mahato, H.S., and Knabner, P., Strong Solvability Up to Clogging of an Effective Diffusion- Precipitation Model in an Evolving Porous Medium, Eur. J. Appl. Math., vol. 28, no. 2, pp. 179-207,2017.

  25. Schumer, R., Benson, D.A., Meerschaert, M.M., and Baeumer, B., Multiscaling Fractional Advection-Dispersion Equations and Their Solutions, Water Resour. Res., vol. 39 ,no. 1,p. 1022,2003a.

  26. Schumer, R., Benson, D.A., Meerschaert, M.M., and Baeumer, B., Fractal Mobile/Immobile Solute Transport, Water Resour. Res., vol. 39, no. 10, p. 1296,2003b.

  27. van Duijn, C.J. and Pop, I.S., Crystal Dissolution and Precipitation in Porous Media: Pore Scale Analysis, J. Reine Angew. Math., vol. 577, pp. 171-211,2004.

  28. van Noorden, T.L., Crystal Precipitation and Dissolution in a Thin Strip, Tech. Rep., CASA report 30, Eindhoven University of Technology, 2007.

  29. van Noorden, T.L., Crystal Precipitation and Dissolution in a Porous Medium: Effective Equations and Numerical Experiments, Multiscale Model. Simul., vol. 7, pp. 1220-1236,2009.

  30. van Noorden, T.L., Pop, I.S., and Roger, M., Crystal Dissolution and Precipitation in Porous Media: L1-Contraction and Uniqueness, Discrete and Continuous Dynamical Systems Supplement, pp. 1013-1020,2007.

  31. van Noorden, T.L., Pop, I.S., Ebigbo, A., and Helmig, R., An Upscaled Model for Biofilm Growth in a Thin Strip, Water Resour. Res, vol. 46, pp. 1-14,2010.

对本文的引用
  1. Sharmin Sohely, Bringedal Carina, Pop Iuliu Sorin, On upscaling pore-scale models for two-phase flow with evolving interfaces, Advances in Water Resources, 142, 2020. Crossref

  2. von Wolff Lars, Pop Iuliu Sorin, Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip, Journal of Fluid Mechanics, 941, 2022. Crossref

将发表的论文

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain