图书馆订阅: Guest

NUMERICAL INVESTIGATION OF THE HYDRODYNAMICS OF A LID-DRIVEN NON-DARCY ANISOTROPIC POROUS CAVITY

卷 10, 册 4, 2019, pp. 339-355
DOI: 10.1615/SpecialTopicsRevPorousMedia.2019029011
Get accessGet access

摘要

The present study investigates the hydrodynamics of a lid-driven flow saturated with non-Darcy anisotropic porous media. The Reynolds numbers considered for the study are 10, 100, and 1000. The effect of the Darcy number (10-5 ≤ Da ≤ 10-2) and porosity (ε = 0.3 and 0.6) have been varied to analyze the permeability ratio (K* = 0.1, 1, and 10), Forchheimer constants ratio (F* = 1, 10, and 100), and principal axes inclination (θ = 0°, 45°, and 90°) on the flow behavior. A semi-implicit method for pressure-linked equations algorithm–based finite-volume method has been employed to solve the governing equations. Quadrilateral cells in a collocated grid arrangement have been considered. The flow physics has been interpreted by plotting the results in terms of streamlines and maximum stream function values. The study reveals that with an increase in the Reynolds number the influence of nonlinear drag forces becomes significant. Also, it is observed that the anisotropic parameters of the non-Darcy porous media profoundly modulate the flow.

参考文献
  1. Ahmed, S.E., Mixed Convection in Thermally Anisotropic Non-Darcy Porous Medium in Double Lid-Driven Cavity Using Bejan's Heatlines, Alexandria Eng. J, vol. 55, no. 1,pp. 299-309,2016. DOI: 10.1016/j.aej.2015.07.016 .

  2. Al-Amiri, A.M., Analysis of Momentum and Energy Transfer in a Lid-Driven Cavity Filled with a Porous Medium, Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3513-3527,2000. DOI: 10.1016/S0017-9310(99)00391-9 .

  3. Aly, A.M. and Ahmed, S.E., An Incompressible Smoothed Particle Hydrodynamics Method for Natural/Mixed Convection in a Non-Darcy Anisotropic Porous Medium, Int. J. Heat Mass Transf., vol. 77, pp. 1155-1168, 2014. DOI: 10.1016/j .ijheatmasstransfer.2014.06.044 .

  4. Basak, T., Roy, S., Singh, S.K., and Pop, I., Analysis of Mixed Convection in a Lid-Driven Porous Square Cavity with Linearly Heated Side Wall(s), Int. J. Heat Mass Transf., vol. 53, nos. 9-10, pp. 1819-1840, 2010. DOI: 10.1016/j.ijheatmasstransfer.2010.01.007 .

  5. Begum, A.S. and Nithyadevi, N., Numerical Study on the Effect of Magnetic Field in a Porous Enclosure Using Nanofluid with Mid-Horizontal Moving Lid: Brinkman-Forchheimer Extended Darcy Model, J. Porous Media, vol. 21, no. 5, pp. 457-470, 2018. DOI: 10.1615/JPorMedia.v21.i5.50 .

  6. Bourchtein, A., Bourchtein, L., and Lukaszczyk, J.P., Numerical Simulation of Incompressible Flows through Granular Porous Media, Appl. Numer. Math, vol. 40, nos. 1-2, pp. 291-306,2002. DOI: 10.1016/S0168-9274(01)00072-1 .

  7. Chandra, P. and Satyamurty, V.V., Effect of Anisotropy on Natural Convective Flow through a Rectangular Porous Slab, J. Porous Media, vol. 15, no. 6, pp. 595-605,2012. DOI: 10.1615/JPorMedia.v15.i6.70 .

  8. Ergun, S., Fluid Flow through Packed Columns, Chem. Eng. Sci., vol. 48, no. 2, pp. 89-94,1952. .

  9. Gaikwad, S.N. and Dhanraj, M., Onset of Double Diffusive Convection in a Maxwell Fluid Saturated Anisotropic Porous Layer with Internal Heat Source, Spec. Top. Rev. Porous Media: Int. J, vol. 4, no. 4, pp. 359-374,2013. DOI: 10.1615/SpecialTopic- sRevPorousMedia. v4.i4.70 .

  10. Ghia, U., Ghia, K.N., and Shin, C.T., High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multi- grid Method, J. Comput. Phys., vol. 48, no. 3, pp. 387-411,1982. .

  11. Guo, Z. and Zhao, T.S., Lattice Boltzmann Model for Incompressible Flows through Porous Media, Phys. Rev. E, vol. 66, no. 36304, pp. 1-9,2002. DOI: 10.1103/PhysRevE.66.036304 .

  12. Haddad, S., Thermal Convection in a Rotating Anisotropic Fluid Saturated Darcy Porous Medium, Fluids, vol. 2, no. 3, pp. 1-15, 2017. DOI: 10.3390/fluids2030044 .

  13. Hdhiri, N. and Ben Beya, B., Numerical Study of Laminar Mixed Convection Flow in a Lid-Driven Square Cavity Filled with Porous Media, Int. J. Numer. Methods Heat Fluid Flow, vol. 28, no. 4, pp. 857-877,2018. DOI: 10.1108/HFF-04-2016-0146 .

  14. Hu, Y., Li, D., Shu, S., and Niu, X., A Multiple-Relaxation-Time Lattice Boltzmann Model for the Flow and Heat Transfer in a Hydrodynamically and Thermally Anisotropic Porous Medium, Int. J. Heat Mass Transf., vol. 104, pp. 544-558, 2017. DOI: 10.1016/j .ijheatmasstransfer.2016.08.008 .

  15. Jaya Krishna, D., Basak, T., and Das, S.K., Non-Darcy Buoyancy Driven Flows in a Fluid Saturated Porous Medium: The Use of Asymptotic Computational Fluid Dynamics (ACFD) Approach, Heat Mass Transf., vol. 44, pp. 1117-1125, 2008. DOI: 10.1007/s00231-007-0348-2 .

  16. Jue, T.C., Analysis of Flows Driven by a Torsionally-Oscillatory Lid in a Fluid-Saturated Porous Enclosure with Thermal Stable Stratification, Int. J. Therm. Sci., vol. 41, no. 8, pp. 795-804,2002. DOI: 10.1016/S1290-0729(02)01373-X .

  17. Kandaswamy, P., Muthtamilselvan, M., and Lee, J., Prandtl Number Effects on Mixed Convection in a Lid-Driven Porous Cavity, J Porous Media, vol. 11, no. 8, pp. 791-801,2008. DOI: 10.1615/JPorMedia.v11.i8.70 .

  18. Karmakar, T. and Raja Sekhar, G.P., A Note on Flow Reversal in a Wavy Channel Filled with Anisotropic Porous Material, Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 473, pp. 1-18,2017. DOI: 10.1098/rspa.2017.0193 .

  19. Khanafer, K. and Aithal, S.M., Mixed Convection Heat Transfer in a Lid-Driven Cavity with a Rotating Circular Cylinder, Int. Commun. Heat Mass Transf., vol. 86, pp. 131-142,2017. DOI: 10.1016/j.icheatmasstransfer.2017.05.025 .

  20. Khanafer, K. and Vafai, K., Double-Diffusive Mixed Convection in a Lid-Driven Enclosure Filled with a Fluid-Saturated Porous Medium, Numer. Heat Transf., Part A, vol. 42, no. 5, pp. 465-486,2002. DOI: 10.1080/10407780290059657 .

  21. Kozelkov, A.S., Lashkin, S.V., Efremov, V.R., Volkov, K.N., Tsibereva, Y.A., and Tarasova, N.V., An Implicit Algorithm of Solving Navier-Stokes Equations to Simulate Flows in Anisotropic Porous Media, Comput. Fluids, vol. 160, pp. 164-174,2018. DOI: 10.1016/j.compfluid.2017.10.029 .

  22. Krishna, D.J., Basak, T., and Das, S.K., Natural Convection in a Heat Generating Hydrodynamically and Thermally Anisotropic Non-Darcy Porous Medium, Int. J. Heat Mass Transf, vol. 51, nos. 19-20, pp. 4691-4703, 2008a. DOI: 10.1016/j .ijheatmasstransfer.2008.02.019 .

  23. Krishna, D.J., Basak, T., and Das, S.K., Numerical Study of Lid-Driven Flow in Orthogonal and Skewed Porous Cavity, Commun. Numer. Methods Eng., vol. 24,no. 10,pp. 815-831,2008b. DOI: 10.1002/cnm.993 .

  24. Krishna, D.J., Basak, T., and Das, S.K., Natural Convection in a Non-Darcy Anisotropic Porous Cavity with a Finite Heat Source at the Bottom Wall, Int. J. Therm. Sci, vol. 48, no. 7, pp. 1279-1293, 2009. DOI: 10.1016/j.ijthermalsci.2008. 11.022 .

  25. Krishna, D.J., Thansekhar, M.R., Venkateshan, S.P., Basak, T., and Das, S.K., Natural Convection in a Partially Heat Generating Rod Bundle inside an Enclosure, J. Heat Transf., vol. 132, no. 10, pp. 1-11,2010. DOI: 10.1115/1.4001610 .

  26. Kumari, M. and Nath, G., Steady Mixed Convection Flow in a Lid-Driven Square Enclosure Filled with a Non-Darcy Fluid-Saturated Porous Medium with Internal Heat Generation, J. Porous Media, vol. 14, no. 10, pp. 893-905, 2011. DOI: 10.1615/JPorMedia.v14.i10.50 .

  27. Mahajan, A. andNandal, R., Stability of an Anisotropic Porous Layer with Internal Heat Source and Brinkman Effects, Spec. Top. Rev. Porous Media: Int. J, vol. 10, no. 1, pp. 65-87,2019. DOI: 10.1615/SpecialTopicsRevPorousMedia.2018025396 .

  28. Mohamad, A.A., Orfi, J., and Al-Ansary, H., Non-Darcy Fluid Flow and Heat Transfer in Conduits Fitted with Porous Media, J. Porous Media, vol. 18, no. 4, pp. 449-453,2015. DOI: 10.1615/JPorMedia.v18.i4.70 .

  29. Mohan, C.G. and Satheesh, A., The Numerical Simulation of Double-Diffusive Mixed Convection Flow in a Lid-Driven Porous Cavity with Magnetohydrodynamic Effect, Arabian J. Sci. Eng., vol. 41, no. 5, pp. 1867-1882, 2016. DOI: 10.1007/s13369- 015-1998-x .

  30. Nakashima, Y. and Kamiya, S., Anisotropic Diffusion in Fibrous Porous Media, J. Porous Media, vol. 13, no. 1, pp. 1-11, 2010. DOI: 10.1615/JPorMedia.v13.i1.10 .

  31. Nayak, A.K., Jena, P.K., and Narayana, P.A.L., Flow Simulation and Mixed Convection in a Lid-Driven Square Cavity with Saturated Porous Media, J. Porous Media, vol. 17, no. 6, pp. 537-548,2014. DOI: 10.1615/JPorMedia.v17.i6.50 .

  32. Nield, D.A. and Bejan, A., Convection in Porous Media, 4th ed., New York, NY: Springer, 2013. .

  33. Nithyadevi, N. and Rajarathinam, M., Double Diffusive Heat Convection of MHD Nanofluid in a Two Sided Lid-Driven Porous Cavity, J Nanofluids, vol. 6, no. 3, pp. 466-477,2017. DOI: 10.1166/jon.2017.1331 .

  34. Nithyadevi, N., Rajarathinam, M., and Suresh, N., Density Maximum Effect of Double-Diffusive Mixed Convection Heat Transfer in a Two-Sided Lid-Driven Porous Cavity, Spec. Top. Rev. Porous Media: Int. J., vol. 8, no. 3, pp. 245-261, 2017. DOI: 10.1615/SpecialTopicsRevPorousMedia.v8.i3. 60 .

  35. Osinov, V.A., Cyclic Shearing and Liquefaction of Soil under Irregular Loading: An Incremental Model for the Dynamic Earthquake-Induced Deformation, Soil Dyn. Earthquake Eng., vol. 23, no. 7, pp. 535-548, 2003. DOI: 10.1016/S0267- 7261(03)00072-1 .

  36. Oztop, H.F., Combined Convection Heat Transfer in a Porous Lid-Driven Enclosure due to Heater with Finite Length, Int. Commun. Heat Mass Transf., vol. 33, no. 6, pp. 772-779,2006. DOI: 10.1016/j.icheatmasstransfer.2006.02.003 .

  37. Pilkington, L.A.B., Review Lecture. The Float Glass Process, Proc. R. Soc. London A. Math. Phys. Sci., vol. 314, no. 1516, pp. 1-25, 1969. DOI: 10.1098/rspa.1969.0212 .

  38. Rahman, M.S., Nasrin, R., and Hoque, M.I., Mixed Convective Flow in Lid-Driven Porous Cavity: Effect of Solid Volume Fraction, Int. J. Pure Appl. Math, vol. 120, no. 6, pp. 6547-6561,2018. .

  39. Srivastava, A.K., Bhadauria, B.S., and Kumar, J., Magnetoconvection in an Anisotropic Porous Layer Using Thermal Nonequi-librium Model, Spec. Top. Rev. Porous Media: Int. J., vol. 2, no. 1,pp. 1-10,2011. DOI: 10.1615/SpecialTopicsRevPorousMedia.v2.i1.10 .

  40. Swamy, M.S., Shivakumara, I.S., and Sidram, W., The Onset of Convection in a Gravity-Modulated Viscoelastic Fluid-Saturated Anisotropic Porous Layer, Spec. Top. Rev. Porous Media: Int. J., vol. 4, no. 1, pp. 69-80, 2013. DOI: 10.1615/SpecialTopic-sRevPorousMedia. v4.i1.70 .

  41. Vafai, K. and Kim, S.J., On the Limitations of the Brinkman-Forchheimer-Extended Darcy Equation, Int. J. Heat Fluid Flow, vol. 16, no. 1,pp. 11-15,1995. DOI: 10.1016/0142-727X(94)00002-T .

  42. Vafai, K. and Tien, C.L., Boundary and Inertia Effects on Flow and Heat Transfer in Porous Media, Int. J. Heat Mass Transf., vol. 24, no. 2, pp. 195-203,1981. DOI: 10.1016/0017-9310(81)90027-2 .

  43. Vishnuvardhanarao, E. and Das, M.K., Laminar Mixed Convection in a Parallel Two-Sided Lid-Driven Differentially Heated Square Cavity Filled with a Fluid-Saturated Porous Medium, Numer. Heat Transf., Part A, vol. 53, no. 1, pp. 88-110, 2008. DOI: 10.1080/10407780701454006 .

  44. Vishnuvardhanarao, E. and Das, M.K., Buoyancy Opposed Mixed Convection in a Two-Sided Lid-Driven Differentially Heated Square Cavity Filled with a Porous Medium, J. Porous Media, vol. 13, no. 12, pp. 1059-1072, 2010. DOI: 10.1615/JPorMedia.v13.i12.20 .

  45. Ward, J.C., Turbulent Flow in Porous Media, J. Hydraul. Div., vol. 90, no. 5, pp. 1-12,1964. .

将发表的论文

HYDROMAGNETIC CASSON FLUID FLOW ACROSS AN INCLINED VERTICAL SURFACE IN POROUS CHANNEL WITH BUOYANCY AND THERMO-DIFFUSION EFFECTS Sowmiya C, Rushi Kumar B Effect of Helical Force on Thermal Convection of a Ferrofluid: A Weakly Non-linear Theory Jagathpally Sharathkumar Reddy, Kishan N, Shiva Kumar Reddy G, Ravi Ragoju STABILITY ANALYSIS OF A COUPLE-STRESS FLUID WITH VARIABLE GRAVITY IN A POROUS MEDIUM FOR DIFFERENT CONDUCTING BOUNDARIES Shalu Choudhary, Reeta Devi, Amit Mahajan, Sunil Sunil CREEPING FLOW ABOUT A TAINTED LIQUID DROP WITH A MICROPOLAR FLUID AND ALIGNED IN A POROUS MEDIUM FILLED WITH VISCOUS FLUID UTILISING SLIP PHANI KUMAR MEDURI, VIJAYA LAKSHMI KUNCHE Reviewing the Impact of Magnetic Prandtl Number and Magnetic Force Parameter on Convective Heat Transfer in Boundary Layers Hossam Nabwey, Muhammad Ashraf, Zia Ullah, Ahmed M. Rashad, Ali J. Chamkha Spectral Analysis for Entropy Generation and Irreversibility on NiZnFe_2O_4 – Engine Oil based Fluids RamReddy Chetteti, Sweta ., Pranitha Janapatla Study of global stability of rotating partially-ionized plasma saturating a porous medium Vishal Chandel, Sunil Kumar, Poonam Sharma Porous Medium Influenced Dissipative Hybrid Casson Nanofluid Flow over a Nonlinearly Stretching Sheet under Inclined Ohmic Lorentz Force Field A. R. Deepika, K. Govardhan, Hussain Basha, G Janardhana Reddy Effect of Motile Gyrotactic Microorganisms on Arterial Stenosis Sisko Nanofluid Flow Through Porous Medium : A Numerical Study Galal Moatimid, Mona Mohamed, Khaled Elagamy, Ahmed Gaber ELECTROTHERMOSOLUTAL CONVECTION IN NANOFLUID SATURATING POROUS MEDIUM Pushap Lata Sharma, Mohini Kapalta EFFECT OF VARIABLE GRAVITY ON THERMAL CONVECTION IN ROTATING JEFFREY NANOFLUID: DARCY-BRINKMAN MODEL Deepak Bains, Pushap Lata Sharma, Gian C. Rana Activation energy effect on MHD convective Maxwell nanofluid flow with Cattaneo-Christove heat flux over a porous stretching sheet JYOTHI NAGISETTY, VIJAYA KUMAR AVULA GOLLA Effects of different fins on Maxwell liquid under hybrid surveys of magnetic and porous material in presence of radiation factors Pooya Pasha, Payam Jalili, Bahram Jalili, Loghman Mostafa, Ahmed Mohammed Mahmood, Hussein Abdullah Abbas, D.D. Ganji
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain