图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
肿瘤形成评论综述™
SJR: 0.631 SNIP: 0.503 CiteScore™: 2

ISSN 打印: 0893-9675
ISSN 在线: 2162-6448

肿瘤形成评论综述™

DOI: 10.1615/CritRevOncog.v5.i4.40
pages 389-428

Tissue-Specific Transformation by Oncogenic Mutants of Epidermal Growth Factor Receptor

T. H. Carter
William K. Warren Medical Research Institute, Department of Medicine, University of Oklahoma Health Sciences Center, P. O. Box 26901, Oklahoma City, OK 73190
H. J. Kung
Department of Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4960

ABSTRACT

Mutations in the receptor for the epidermal growth factor provide valuable insight into mechanisms of growth control. Oncogenic mutants of this receptor tyrosine kinase cause erythroid leukemia, fibrosarcoma, angiosarcoma, glioblastoma, and melanoma. Mutations in the avian protooncogene occur by retroviral mechanisms. Deletion of the ligand-binding domain results in erythroblastosis, while additional mutations in cytoplasmic structures broaden the disease potential to other cell types. A carboxyl-terminal structure of erbB oncogenes modulates growth responses in a complex, cell-specific manner; this tissue-specificity region appears to promote growth in erythroblasts and to produce trans-dominant inhibition in fibroblasts. Human glioblastoma multiforme frequently contains receptor mutations that are reminiscent of avian oncogenes. In hereditary melanoma of Xiphophorus, aberrant regulation of transcription by a recombinant promoter determines tissue-specific tumorigenesis. The diversity of oncogenic mutations raises important questions concerning the roles of several receptor structures. The extracellular domain inhibits the receptor when unoccupied by ligand, for example, through a mechanism that is unknown. The auto-phosphorylation sites are dispensable for transformation, so their function in neoplastic growth is unclear. The carboxyl-terminal region promotes or blocks transformation in different tissues, suggesting complex regulation by unknown cellular factors. These issues are critical to understanding of the mechanisms of receptor activation and tissue tropism for this family of oncogenes.


Articles with similar content:

The VAV Family of Signal Transduction Molecules
Critical Reviews™ in Oncogenesis, Vol.7, 1996, issue 1-2
Xose R. Bustelo
Regulatory Controls for Osteoblast Growth and Differentiation: Role of Runx/Cbfa/AML Factors
Critical Reviews™ in Eukaryotic Gene Expression, Vol.14, 2004, issue 1&2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Andre J. van Wijnen, Amjad Javed, Gary S. Stein, Christopher Lengner
Architectural Genetic and Epigenetic Control of Regulatory Networks: Compartmentalizing Machinery for Transcription and chromatin remodeling in nuclear Microenvironments
Critical Reviews™ in Eukaryotic Gene Expression, Vol.20, 2010, issue 2
Sayyed Kaleem Zaidi, Janet L. Stein, Jane B. Lian, Martin Montecino, Jeffrey A. Nickerson, Andre J. van Wijnen, Gary S. Stein, Anthony N. Imbalzano
Action of RANKL and OPG for Osteoclastogenesis
Critical Reviews™ in Eukaryotic Gene Expression, Vol.19, 2009, issue 1
Yasuhiro Kobayashi, Nobuyuki Udagawa, Naoyuki Takahashi
Steel Factor and c-kit Protooncogene: Genetic Lessons in Signal Transduction
Critical Reviews™ in Oncogenesis, Vol.5, 1994, issue 2-3
Janna M. Blechman, David Givol, Yosef Yarden, Sima Lev