图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.2014006874
pages 91-107

KINETIC CHARACTERIZATION OF EXPANDED GRAPHITE, CALCIUM CHLORIDE, AND MAGNESIUM HYDROXIDE COMPOSITE FOR THE CHEMICAL HEAT PUMP

Seon Tae Kim
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN
Massimiliano Zamengo
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN
Junichi Ryu
Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, JAPAN
Yukitaka Kato
Laboratory for Advanced Nuclear Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1-N1-22, Ookayama, Meguro-ku, Tokyo 152-8550, Japan

ABSTRACT

A composite chemical heat storage material, EMC, comprising a mixture of expanded graphite (EG), magnesium hydroxide (Mg(OH)2), and calcium chloride (CaCl2) has been developed as a magnesium oxide/water chemical heat pump reactant. The reaction kinetic characterization of the optimized EMC (which was an optimized mixing weight ratio of the material) was conducted. From BET and thermal conductivity measurements, it was confirmed that an optimized EMC had a higher specific surface area and thermal conductivity values than pure Mg(OH)2 on adding EG. The durability of the optimized EMC was also investigated by thermobalance and XRD experiments. EMC maintained enough reacted conversion and unchanged crystal structure throughout the repetitive experiment. The film diffusion control model was suggested as a dominant reaction process for MgO hydration by kinetic analysis of experimental results. In conclusion, the optimized EMC showed shorter dehydration time corresponding to the heat storage process period and enhanced hydration conversion corresponding to the heat output capacity than pure Mg(OH)2 on adding EG, a moldable and porous carbon material, and a CaCl2 hydrophilic material.


Articles with similar content:

THE PERFORMANCE INVESTIGATION OF HYDROPHILIC MATERIALS MODIFIED LiOH·H2O BASED COMPOSITE THERMOCHEMICAL MATERIALS FOR LOW TEMPERATURE THERMAL ENERGY STORAGE
International Heat Transfer Conference 16, Vol.5, 2018, issue
Shijie Li, Jun Li , Huhetaoli, Hongyu Huang , Noriyuki Kobayashi, Zhaohong He, Yu Bai
THERMODYNAMICAL EXPLANATION OF DISSOLUTION MECHANISM OF LIQUID CO2 WITH CLATHRATE-HYDRATE FILM
International Heat Transfer Conference 11, Vol.12, 1998, issue
Shuichiro Hirai, Yutaka Tabe, Ken Okazaki, Katsuyuki Kawamura, Kunio Hijikata
THERMOCHEMICAL ENERGY STORAGE: FROM IN-SILICO CHARACTERIZATION TO FULL-SCALE EXPERIMENTATION
International Heat Transfer Conference 16, Vol.2, 2018, issue
C. Ferchaud, Shuiquan Lan, A.D. Pathak, Mohammadreza Gaeini, Camilo C. M. Rindt, Huaichen Zhang, E. Iype
THERMAL CONDUCTIVITY ENHANCEMENT OF MATERIAL FOR CALCIUM CHLORIDE/WATER THERMOCHEMICAL ENERGY STORAGE
International Heat Transfer Conference 16, Vol.20, 2018, issue
Maho Mitsuo, Yukitaka Kato, Takayuki Terauchi, Hiroshi Iguchi, Keiko Fujioka, Takuma Ohtaki
RESPONSE TIME AND STABILITY CHARACTERISTICS OF PMMA-CONTAINING BARIUM TITANATE SENSORS
Special Topics & Reviews in Porous Media: An International Journal, Vol.3, 2012, issue 3
Tahsin Boyraz, Okan Addemir, Burcu Ertug