图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 1.199 5年影响因子: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.2014006816
pages 701-723

NUMERICAL STUDY OF THE SHELL−SIDE PERFORMANCE OF THE TRISECTION BAFFLED AND QUARTERN BAFFLED HEAT EXCHANGERS

Yongli Sun
School of Chemical Engineering and Technology; National Engineering Research Center for Distillation Technology, Tianjin University, Tianjin, P. R. China
Feiyang Li
School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
Luhong Zhang
School of Chemical Engineering and Technology, Tianjin University, 92, Weijin Road, Tianjin 300072, China
Bin Jiang
School of Chemical Engineering and Technology; National Engineering Research Center for Distillation Technology, Tianjin University, Tianjin, P. R. China
Xiaoming Xiao
School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China

ABSTRACT

In this article, the heat transfer performance and the resistance loss of a trisection baffled heat exchanger and a quartern baffled heat exchanger with 20°, 30°, 40°, and 50° helical angles are analyzed comparatively by using the commercial codes GAMBIT 6.4 and FLUENT 14.0. With the same helical angle and under the same shell side volume flow rate, both the average heat transfer coefficient and the pressure drop of the trisection baffled heat exchanger are larger than those of the quartern baffled heat exchanger because of the longer helical line in the former. However, the heat transfer coefficient per pressure drop of the trisection baffled heat exchanger is lower than that of the quartern baffled heat exchanger. So the comprehensive performance of the quartern baffled heat exchanger is better than that of the trisection baffled heat exchanger. It is also observed that the comprehensive performance of a quartern baffled heat exchanger with the 40° helical angle is the best. A series of simulations on the trisection baffled heat exchanger and the quartern baffled heat exchanger with the same helical pitch are also carried out, with the simulation results demonstrating that with the same helical line, the outlet temperature and the pressure drop of the trisection baffled heat exchanger are similar to those of the quartern baffled heat exchanger. According to two simulation results for the former we can conclude that the major influencing factor on the heat transfer performance and resistance loss in a helically baffled heat exchanger is the helical line. The research achievement of heat transfer and flow distribution in this investigation will provide theoretical basis for further optimization of the helically baffled heat exchanger.


Articles with similar content:

THE EFFECT OF TRANSVERSE TUBE PITCH ON THE THERMAL-HYDRODYNAMIC PERFORMANCE OF A CIRCULAR TUBE-PLATE-FIN HEAT EXCHANGER WITH FIN-MOUNTED VORTEX GENERATORS
Journal of Enhanced Heat Transfer, Vol.22, 2015, issue 3
Wan-Ling Hu, Yong Guan, Liang-Bi Wang
CHARACTERISTIC RESEARCH OF THE NEW TYPE ENERGY SAVING TUBULAR HEAT EXCHANGER WITH LONGITUDINAL-FLOW OF SHELLSIDE FLUID
Energy and Environment, 1995, Vol.0, 1995, issue
Chaxiu Guo, QiWu Dong, Xuesheng Wang, MingShan Liu, QingJun Hu
THE EXPERIMENTAL STUDY OF HEAT TRANSFER ENHANCEMENT AND PRESSURE DROP CHARACTERISTICS WITH WING-TYPE VORTEX GENERATORS FOR STAGGERED CIRCULAR TUBE BANK FIN COMPACT HEAT EXCHANGER
Proceedings of Symposium on Energy Engineering in the 21st Century (SEE2000) Volume I-IV, Vol.0, 2000, issue
Y. Qiu , Y. X. Dong , Liang-Bi Wang, Y. G. Mei , Y. H. Zhang
A Numerical Study of Fluid and Heat Transfer Performance of Heat Exchangers with Novel Short-Circuit Prevention Helical Baffles
International Heat Transfer Conference 15, Vol.23, 2014, issue
Wenjing Du, Hongfu Wang, Gongming Xin, Lin Cheng
The Combined Effects of Angle of Attack and Louver Angle of a Winglet Pair on Heat Transfer Enhancement
Journal of Enhanced Heat Transfer, Vol.10, 2003, issue 1
Joon Sik Lee, Byung Kyu Park, Jae Dong Chung