图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.2012005537
pages 405-423

AN EXACT SOLUTION FOR THERMAL ANALYSIS OF A CYLINDRICAL OBJECT USING A HYPERBOLIC HEAT CONDUCTION MODEL

Seyfolah Saedodin
Department of Mechanical Engineering, Semnan University, Semnan, Iran
Mohammad Sadegh Motaghedi Barforoush
Faculty of Mechanical Engineering, Semnan University, Semnan, Iran

ABSTRACT

The purpose of the present paper is to carry out the non-Fourier effect subjected to a special heat-flux boundary condition. The governing equation is expressed in cylindrical coordinates and is solved by deriving the analytical solution. The temperature layers and profiles of sample calculations are performed. It is found that, as much as the Vernotte number is higher, a point can get to higher temperature during the process. Also, it can be perceived that the temperature of different points of the object becomes even lower than the initial temperature.