图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 1.199 5年影响因子: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.2019030372
pages 447-497

WHICH PARAMETER SHOULD BE USED IN EVALUATING NANOFLUID FLOWS: REYNOLDS NUMBER, VELOCITY, MASS FLOW RATE OR PUMPING POWER?

Cuneyt Uysal
Automotive Technologies Program, TOBB Vocational School of Technical Sciences, Karabuk University, 78050, Karabuk, Turkey

ABSTRACT

The heat transfer, fluid flow, and entropy generation characteristics of a diamond-Fe3O4/water hybrid nanofluid are investigated numerically for different nanoparticle volume fractions under laminar flow conditions. In addition, diamond/water and Fe3O4/water nanofluids are investigated to compare with their hybrid form. The results are presented at the given Reynolds number, velocity, mass flow rate, and pumping power. As a result, overabundant enhancements are observed in thermal performances of nanofluids when evaluation is realized for the same Reynolds number. At Re = 2000, a diamond-Fe3O4/water hybrid nanofluid (φ = 0.2%) provides a convective heat transfer enhancement of 30.31%. However, at V = 1.3 m/s, the convective heat transfer coefficient obtained for a diamond-Fe3O4/water hybrid nanofluid (φ = 0.2%) is 2.17% higher than that of pure water. It is also observed that pure water has a better convective heat transfer rate compared to a diamond-Fe3O4/water hybrid nanofluid when the evaluation is performed at the same pumping power. Among all evaluation parameters, it is found that there is a minimum entropy generation point. Although it is difficult to decide, but the results obtained with evaluation performed at the same velocity or the same pumping power can be more realistic and reasonable.

REFERENCES

  1. Adriana, M.A., Hybrid Nanofluids Based on Al2O3, TiO2, and SiO2: Numerical Evaluation of Different Approaches, Int. J. Heat Mass Transf., vol. 104, pp. 852-860, 2017.

  2. Alawi, O.A., Sidik, N.A.C., Xian, H.W., Kean, T.H., and Kazi, S.N., Thermal Conductivity and Viscosity Models of Metallic Oxides Nanofluids, Int. J. Heat Mass Transf.., vol. 116, pp. 1314-1325, 2018.

  3. Alfaryjat, A.A., Mohammed, H.A., Adam, N.M., Stanciu, D., and Dobrovicescu, A., Numerical Investigation of Heat Transfer Enhancement Using Various Nanofluids in Hexagonal Microchannel Heat Sink, Therm. Sci. Eng. Prog., vol. 5, pp. 252-262, 2018.

  4. Allahyar, H.R., Hormozi, F., and Zarenezhad, B., Experimental Investigation on the Thermal Performance of a Coiled Heat Exchanger Using a New Hybrid Nanofluid, Exp. Therm. Fluid Sci., vol. 76, pp. 324-329, 2016.

  5. Bowers, J., Cao, H., Qiao, G., Li, Q., Zhang, G., Mura, E., and Ding, Y., Flow and Heat Transfer Behavior of Nanofluids in Microchannels, Prog. Nat. Sci.: Mater. Int., vol. 28, no. 2, pp. 225-234, 2018.

  6. Buschmann, M.H., Azizian, R., Kempe, T., Julia, J.E., Martinez-Cuenca, R., Sunden, B., Wu, Z., Seppala, A., and Ala-Nissila, T., Correct Interpretation of Nanofluid Convective Heat Transfer, Int. J. Therm. Sci., vol. 129, pp. 504-531, 2018.

  7. Das, S.K., Choi, S.U.S., Yu, W., and Pradeep, T., Nanofluids Science and Technology, Hoboken, New Jersey: John Wiley and Sons, 2008.

  8. Dawood, H.K., Mohammed, H.A., Sidik, N.A.C., and Munisamy, K.M., Numerical Investigation on Heat Transfer and Friction Factor Characteristics of Laminar and Turbulent Flow in an Elliptic Annulus Utilizing Nanofluid, Int. Commun. Heat Mass Transf., vol. 66, pp. 148-157, 2015.

  9. Dawood, H.K., Mohammed, H.A., Sidik, N.A.C., Munisamy, K.M., and Alawi, O.A., Heat Transfer Augmentation in Concentric Elliptic Annular by Ethylene Glycol-Based Nanofluids, Int. Commun. Heat Mass Transf., vol. 82, pp. 29-39, 2017.

  10. Goharkhah, M., Salarian, A., Ashjaee, M., and Shahabadi, M., Convective Heat Transfer Characteristics of Magnetite Nanofluid under the Influence of Constant and Alternating Magnetic Field, Powder Technol., vol. 274, pp. 258-267, 2015.

  11. Ho, C.J. and Chen, W.C., An Experimental Study on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink, Appl. Therm. Eng., vol. 50, no. 1, pp. 516-522, 2013.

  12. Huang, D., Wu, Z., and Sunden, B., Effects of Hybrid Nanofluid Mixture in Plate Heat Exchangers, Exp. Therm. Fluid Sci., vol. 72, pp. 190-196, 2016.

  13. Incropera, F.P., DeWitt, D.P., Bergman, T.L., and Lavine, A.S., Introduction to Heat Transfer, Hoboken, New Jersey: Wiley, 2006.

  14. Kumar, V. and Sarkar, J., Two-Phase Numerical Simulation of Hybrid Nanofluid Heat Transfer in Minichannel Heat Sink and Experimental Validation, Int. Commun. Heat Mass Transf., vol. 91, pp. 239-247, 2018.

  15. Madhesh, D. and Kalaiselvam, S., Experimental Analysis of Hybrid Nanofluid as Coolant, Procedia Eng., vol. 97, pp. 1667-1675, 2014.

  16. Maheshwary, P.B., Handa, C.C., and Nemade, K.R., A Comprehensive Study of Effect of Concentration, Particle Size and Particle Shape on Thermal Conductivity of Titania/Water-Based Nanofluid, Appl. Therm. Eng., vol. 119, pp. 79-88, 2017.

  17. Mehrali, M., Sadeghinezhad, E., Akhiani, A.R., Latibari, S.T., Metselaar, H.S.C., Kherbeet, A.S., and Mehrali, M., Heat Transfer and Entropy Generation Analysis of Hybrid Graphene/Fe3O4 Ferro-Nanofluid Flow under the Influence of a Magnetic Field, Powder Technol., vol. 308, pp. 149-157, 2017.

  18. Mikkola, V., Puupponen, S., Granbohm, H., Saari, K., Ala-Nissila, T., and Seppala, A., Influence of Particle Properties on Convective Heat Transfer of Nanofluids, Int. J. Therm. Sci., vol. 124, pp. 187-195, 2018.

  19. Moghadassi, A., Ghomi, E., and Parvizian, F., A Numerical Study of Water-Based Al2O3 and Al2O3-Cu Hybrid Nanofluid Effect on Forced Convective Heat Transfer, Int. J. Therm. Sci., vol. 92, pp. 50-57, 2015.

  20. Mohammed, H.A., Gunnasegaran, P., and Shuaib, N.H., Heat Transfer in Rectangular Microchannels Heat Sink Using Nanofluids, Int. Commun. Heat Mass Transf., vol. 37, no. 10, pp. 1496-1503, 2010.

  21. Mohammed, H.A., Bhaskaran, G., Shuaib, N.H., and Saidur, R., Numerical Study of Heat Transfer Enhancement of Counter Nanofluids Flow in Rectangular Microchannel Heat Exchanger, Superlattices Microstructures, vol. 50, no. 3, pp. 215-233, 2011a.

  22. Mohammed, H.A., Gunnasegaran, P., and Shuaib, N.H., The Impact of Various Nanofluid Types on Triangular Microchannels Heat Sink Cooling Performance, Int. Commun. Heat Mass Transf., vol. 38, no. 6, pp. 767-773, 2011b.

  23. Moraveji, M.K. and Ardehali, R.M., CFD Modeling (Comparing Single- and Two-Phase Approaches) on Thermal Performance of Al2O3/Water Nanofluid in a Minichannel Heat Sink, Int. Commun. Heat Mass Transf., vol. 44, pp. 157-164, 2013.

  24. Murshed, S.M.S., Leong, K.C., and Yang, C., Enhanced Thermal Conductivity of TiO2-Water Based Nanofluids, Int. J. Therm. Sci., vol. 44, pp. 367-373, 2005.

  25. Nabil, M.F., Azmi, W.H., Hamid, K.A., and Mamat, R., Experimental Investigation of Heat Transfer and Friction Factor of TiO2-SiO2 Nanofluids in Water:Ethylene Glycol Mixture, Int. J. Heat Mass Transf., vol. 124, pp. 1361-1369, 2018.

  26. Patankar, S.V., Numerical Heat Transfer and Fluid Flow, New York: CRC Press, 1980.

  27. Salman, B.H., Mohammed, H.A., and Kherbeet, A.S., Numerical and Experimental Investigation of Heat Transfer Enhancement in a Microtube Using Nanofluids, Int. Commun. Heat Mass Transf., vol. 59, pp. 88-100, 2014.

  28. Sharifpur, M., Tshimanga, N., Meyer, J.P., and Manca, O., Experimental Investigation and Model Development for Thermal Conductivity of a -Al2O3-Glycerol Nanofluids, Int. Commun. Heat Mass Transf., vol. 85, pp. 12-22, 2017.

  29. Sheikholeslami, M. and Shamlooei, M., Fe3O4-H2O Nanofluid Natural Convection in the Presence of Thermal Radiation, Int. J. Hydrogen Energy, vol. 42, no. 9, pp. 5708-5718, 2017.

  30. Shi, X., Li, S., Wei, Y., and Gao, J., Numerical Investigation of Laminar Convective Heat Transfer and Pressure Drop of Water-Based Al2O3 Nanofluids in a Microchannel, Int. Commun. Heat Mass Transf., vol. 90, pp. 111-120, 2018.

  31. Sundar, L.S., Singh, M.K., and Sousa, A.C.M., Investigation of Thermal Conductivity and Viscosity of Fe3O4 Nanofluid for Heat Transfer Applications, Int. Commun. Heat Mass Transf., vol. 44, pp. 7-14, 2013.

  32. Sundar, L.S., Ramana, E.V., Graja, M.P.F., Singh, M.K., and Sousa, A.C.M., Nanodiamond-Fe3O4 Nanofluids: Preparation and Measurement of Viscosity, Electrical and Thermal Conductivities, Int. Commun. Heat Mass Transf., vol. 73, pp. 62-74, 2016a.

  33. Sundar, L.S., Hortiguela, M.J., Singh, M.K., and Sousa, A.C.M., Thermal Conductivity and Viscosity of Water Based Nanodia-mond (ND) Nanofluids: An Experimental Study, Int. Commun. Heat Mass Transf., vol. 76, pp. 245-255, 2016b.

  34. Teng, T.P., Hung, Y.H., Teng, T.C., Mo, H.E., and Hsu, H.G., The Effect of Alumina/Water Nanofluid Particle Size on Thermal Conductivity, Appl. Therm. Eng., vol. 30, pp. 2213-2218, 2010.

  35. Uysal, C., Arslan, K., and Kurt, H., Entropy Generation of Zirconia-Water Nanofluid Flow through Rectangular Microchannel, Therm. Sci., vol. 22, no. 6, pp. 1395-1405, 2018.

  36. Uysal, C. and Korkmaz, M.E., Estimation of Entropy Generation for Ag-MgO/Water Hybrid Nanofluid Flow through Rectangular Minichannel by Using Artificial Neural Network, J. Polytechnic, vol. 22, no. 1, pp. 41-51, 2019.

  37. Uysal, C., Gedik, E., and Chamkha, A.J., A Numerical Analysis of Laminar Forced Convection and Entropy Generation of a Diamond-Fe3O4/Water Hybrid Nanofluid in a Rectangular Minichannel, J. Appl. Fluid Mech., vol. 12, no. 2, pp. 391-402, 2019.

  38. Verma, S.K., Tiwari, A.K., Tiwari, S., and Chauhan, D.S., Performance Analysis of Hybrid Nanofluids in Flat Plate Solar Collector as an Advanced Working Fluid, Solar Energy, vol. 167, pp. 231-241, 2018.

  39. Yang, C., Wu, X., Zheng, Y., and Qiu, T., Heat Transfer Performance Assessment of Hybrid Nanofluids in a Parallel Channel under Identical Pumping Power, Chem. Eng. Sci., vol. 168, pp. 67-77, 2017.


Articles with similar content:

HEAT TRANSFER ENHANCEMENT IN AN EQUILATERAL TRIANGULAR DUCT BY USING AN Al2O3/WATER NANOFLUID: EFFECT OF NANOPARTICLE SHAPE AND VOLUME FRACTION
Heat Transfer Research, Vol.51, 2020, issue 8
Muhammet Samet Ali Çetinkaya, Recep Ekiciler, Kamil Arslan
ANALYSIS OF ENTROPY GENERATION, PUMPING POWER, AND TUBE WALL TEMPERATURE IN AQUEOUS SUSPENSIONS OF ALUMINA PARTICLES
Heat Transfer Research, Vol.43, 2012, issue 4
Abdollah Avara, Ebrahim Shirani, Mohammad Karami
EFFECTS OF A MIXTURE OF CuO AND Al2O3 NANOPARTICLES ON THE THERMAL EFFICIENCY OF A FLAT PLATE SOLAR COLLECTOR AT DIFFERENT MASS FLOW RATES
Heat Transfer Research, Vol.50, 2019, issue 10
Kyung Chun Kim, Mohsen Mirzaei, Zahra Ouderji Hajabdollahi
THE EFFECT OF CHAMFER LENGTH ON THERMAL AND HYDRAULIC PERFORMANCE BY USING Al2O3-WATER NANOFLUID THROUGH A SQUARE CROSS-SECTIONAL DUCT
Heat Transfer Research, Vol.50, 2019, issue 12
Orhan Keklikcioglu, Veysel Ozceyhan, Toygun Dagdevir
HEAT TRANSFER CHARACTERISTICS OF TRANSFORMER OIL/DIW-BASED NICKEL-SUBSTITUTED MAGNESIUM MANGANESE NANOFERROFLUID FLOWING THROUGH STRAIGHT TUBES AND HELICAL COILS
Nanoscience and Technology: An International Journal, Vol.8, 2017, issue 2
V. Gayathri, Subbiah Rammohan Chitra