图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.v36.i4.50
pages 311-318

Enhancement of Heat Transfer in a Short Rectangular Channel with Substantial Deflection of Inlet Velocity from Axial Direction

Ronald S. Bunker
GE Global Research, General Electric, Niskayuna, NY, USA
Mikhail Ya. Belenkiy
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia
Mikhail Gotovskii
I. I. Polzunov Scientific and Development Association on Research and Design of Power Equipment (NPO TsKTI), 3/6 Atamanskaya Str., St. Petersburg, 191167, Russia
B. S. Fokin
JSC "I. I. Polzunov Central Boiler and Turbine Institute" (NPO TsKTI), St. Petersburg, 195257, Russia

ABSTRACT

Experimental and theoretical investigation of heat transfer and hydrodynamics of a heated short rectangular channel which is an element of a header system with a plane rectangular header of constant cross section is carried out. Depending on the position of the inlet into the channel relative to the inlet section of the supply header, the flow rate and flow inlet angle as well as the total velocity of the flow change in the header, which is associated with the presence of a transit flow through the supply header. The indicated factors exert a substantial influence on the heat transfer coefficients in the channel. For a more correct comparison of experimental data with the case of an axial inlet, heat transfer in the test channel was also determined in the absence of the transit flow, i.e., practically for the case of an axial inlet. On maximum deviation of the flow inlet angle from the axial one, an increase in the rate of heat transfer in comparison with the axial inlet was from 60% to 100%.