图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

传热学

DOI: 10.1615/HeatTransRes.2014006516
pages 507-539

NANOFLUID FLOW HEAT TRANSFER PERFORMANCE IN A SQUARE ENCLOSURE WITH DIFFERENT VENTING LOCATIONS

Mohammad Najafi
Department of Mechanical and Aerospace Engineering, Islamic Azad University, Science and Research Branch, Tehran, Iran
Mahdi Aboujafari
Department of Mechanical and Aerospace Engineering, Islamic Azad University, Tehran Science and Research Branch, Tehran, Iran
Koroush Javaherdeh
Department of Mechanical Engineering, Guilan University, Rasht, Iran

ABSTRACT

This study considers mixed convection heat transfer performance of a laminar nanofluid flow through a vented two-dimensional square enclosure. The study compares the heat transfer characteristics of the nanofluid in the square enclosure for different locations of the inlet and outlet ports. The enclosure comprises two different constant-temperature top and bottom walls, with the bottom wall being at a differentially higher temperature than its counterpart, and two thermally insulated side walls. The working nanofluid considered is Cu−water with various volume fractions of its solids. The finite volume method together with the SIMPLE algorithm for a uniformly staggered grid is employed as a numerical method. In addition to varying the inlet and outlet vents locations, the Reynolds number, Richardson number, and the nanofluid volume fraction are considered as varying parameters in observing the nanofluid flow and heat transfer throughout the enclosure. To verify the accuracy of the developed computer code utilized, the results of three test cases considered in this work are compared with those of other investigators. The results of the present study show that, although locating both the inlet and outlet ports on the bottom of the two side walls show the highest rate of heat transfer from the bottom hot wall, for high Richardson numbers, locating the inlet on the bottom and the outlet on the top of the opposite side walls gives comparable heat transfer results. Therefore, in cases where the design constraints may not allow placing both the inlet and outlet ports on the bottom, locating the inlet on the bottom and the outlet on the top of the side walls is the best option to secure the highest heat transfer rate from the bottom hot wall.


Articles with similar content:

IMPLICATIONS OF PLACING A POROUS BLOCK IN A MIXED-CONVECTION HEAT-TRANSFER, LID-DRIVEN CAVITY HEATED FROM BELOW
Journal of Porous Media, Vol.16, 2013, issue 4
Abdalla M. AlAmiri
CONJUGATE NATURAL CONVECTION IN AN INCLINED SQUARE POROUS ENCLOSURE WITH FINITE WALL THICKNESS AND PARTIALLY HEATED FROM ITS LEFT SIDEWALL
Heat Transfer Research, Vol.47, 2016, issue 4
Sameh Elsayed Ahmed, M. M. Abd El-Aziz, Sivanandam Sivasankaran, Ahmed Kadhim Hussein
NUMERICAL INVESTIGATION OF A COPPER—WATER NANOFLUID FLOWING IN A PARALLEL PLATE CHANNEL
Heat Transfer Research, Vol.50, 2019, issue 7
Saeb Ragani, Arian Bahrami
NUMERICAL INVESTIGATION OF MIXED CONVECTION OF SiO2-WATER NANOFLUIDS WITHIN AN INCLINED DOUBLE LIDS-DRIVEN CAVITY
Heat Transfer Research, Vol.49, 2018, issue 10
M. R. Faridzadeh, J. Amani, Davood Semiromi Toghraie, A. Niroumand, Arash Karimipour
NON UNIFORM BOUNDARY CONDITIONS IN WALL CURVED CAVITIES FOR FREE CONVECTION
ICHMT DIGITAL LIBRARY ONLINE, Vol.11, 2004, issue
Omar Imine, A. Sabeur-Bendehina, Lahouari Adjlout, M. Aounallah