图书馆订阅: Guest
传热学

每年出版 18 

ISSN 打印: 1064-2285

ISSN 在线: 2162-6561

The Impact Factor measures the average number of citations received in a particular year by papers published in the journal during the two preceding years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) IF: 1.7 To calculate the five year Impact Factor, citations are counted in 2017 to the previous five years and divided by the source items published in the previous five years. 2017 Journal Citation Reports (Clarivate Analytics, 2018) 5-Year IF: 1.4 The Immediacy Index is the average number of times an article is cited in the year it is published. The journal Immediacy Index indicates how quickly articles in a journal are cited. Immediacy Index: 0.6 The Eigenfactor score, developed by Jevin West and Carl Bergstrom at the University of Washington, is a rating of the total importance of a scientific journal. Journals are rated according to the number of incoming citations, with citations from highly ranked journals weighted to make a larger contribution to the eigenfactor than those from poorly ranked journals. Eigenfactor: 0.00072 The Journal Citation Indicator (JCI) is a single measurement of the field-normalized citation impact of journals in the Web of Science Core Collection across disciplines. The key words here are that the metric is normalized and cross-disciplinary. JCI: 0.43 SJR: 0.318 SNIP: 0.568 CiteScore™:: 3.5 H-Index: 28

Indexed in

EXPERIMENTAL INVESTIGATION OF NANOLUBRICANT USAGE IN A COOLING SYSTEM AT DIFFERENT NANOPARTICLE CONCENTRATIONS

卷 51, 册 10, 2020, pp. 949-965
DOI: 10.1615/HeatTransRes.2020033812
Get accessGet access

摘要

Nanoparticles-containing working fluid utilization in thermal systems has been increasing day after day because of their capabilities of enhancing thermophysical properties of the base fluid. In this experimental study, influences of nanoparticle utilization inside the polyol ester compressor oil in a cooling system as a nanolubricant were investigated. Titanium dioxide nanoparticles were added to the polyol ester compressor oil, together with 350 g of an R134a refrigerant. A surface active agent was also used in order to prevent agglomerations of doped nanoparticles during operation of the system. Experiments were conducted at different nanoparticle concentrations (1.0 wt.%, 1.5 wt.%, and 2.0 wt.%) to show the effects of nanoparticle concentration on performance of the cooling system. Cooling coefficient of performance and power consumption of the compressor were analyzed. As a consequence of the experiments, the best results were obtained in the cases in which nanoparticle concentration of 1.0% nanolubricant was used. The cooling coefficient of performance of the system was increased up to 4.70, and the power consumption of the compressor was decreased to 26.28 kj·h-1.

参考文献
  1. Adelekan, D.S., Ohunakin, O.S., Babarinde, T.O., Odunfa, M.K., Leramo, R.O., Oyedepo, S.O., and Badejo, D.C., Experimental Performance of LPG Refrigerant Charges with Varied Concentration of TiO2 Nanolubricants in a Domestic Refrigerator, Case Studies Therm. Eng., vol. 9, pp. 55-61, 2017. DOI:10.1016/j.csite.2016.12.002.

  2. Aydin, D.Y., Guru, M., Sozen, S., and Qiftfi, E., Thermal Performance Improvement of the Heat Pipe by Employing Dolomite/ Ethylene Glycol Nanofluid, Int. J. Renew. Energy Devel., vol. 9, no. 1, pp. 23-27, 2020. DOI: 10.14710/ijred.9.1.23-27.

  3. Azmi, W.H., Sharif, M.Z., Yusof, T.M., Mamat, R., and Redhwan, A.A.M., Potential of Nanorefrigerant and Nanolubricant on Energy Saving in Refrigeration System-A Review, Renew. Sustain. Energy Rev., vol. 69, pp. 415-428, 2017. DOI:10.1016/j.rser.2016.11.207.

  4. Bandgar, M.S., Ragit, S.S., Kolhe, K.P., and Biradar, N.S., Effect of Nanolubricant on the Performance of Vapor Compression Refrigeration System: A Review, J. Emerging Technol. Innov. Res., vol. 3, no. 4, pp. 56-59, 2016.

  5. Bi, S., Kuo. G., Liu, Z., and Wu, J., Performance of a Domestic Refrigerator Using TiO2-R600a Nanorefrigerant as Working Fluid, Energy Convers. Manage., vol. 52, no. 1, pp. 733-737, 2011. DOI: 10.1016/j.enconman.2010.07.052.

  6. Bianco, V., Vafai, K., Manca, O., and Nardini, S., Heat Transfer Enhancement with Nanofluids, Boca Raton: CRC Press, 2015.

  7. Qengel A. Yunus, A., and Boles M., Muhendislik Yaklagimiyla Termodinamik, Istanbul: Palme Yayincilik, 2008.

  8. Chen, M., He, Y. Zhu, J., and Wen, D., Investigating the Collector Efficiency of Silver Nanofluids Based Direct Absorption Solar Collectors, Appl. Energy, vol. 181, pp. 65-74, 2016. DOI: 10.1016/j.apenergy.2016.08.054.

  9. Chiam, H.W., Azmi, W.H., Usri, N.A., Mamat, R., and Adam, N.M., Thermal Conductivity and Viscosity of Al2O3 Nanofluids for Different Based Ratios of Water and Ethylene Glycol Mixture, Exp. Therm. Fluid Sci., vol. 81, pp. 420-429, 2017. DOI: 10.1016/j.expthermflusci.2016.09.013.

  10. Qiftfi, E., Sozen A., and Karaman, E., TiO2 Iferen Nanoakiskan Kullaniminin Isi Borusu Performansina Etkisinin Deneysel Olarak Incelenmesi, PoliteknikDergisi., vol. 19, no. 3, pp. 367-376, 2016.

  11. Esfe, M.H., Afrand, M., Rostamian, S.H., and Toghraie, D., Examination of Rheological Behavior of MWCNTs/ZnO-SAE40 Hybrid Nano-Lubricants under Various Temperatures and Solid Volume Fractions, Exp. Therm. Fluid Sci., vol. 80, pp. 384-390, 2017. DOI: 10.1016/j.expthermflusci.2016.07.011.

  12. Guru, M., Sozen A., Karakaya, U., and Qiftfi, E., Influences of Bentonite-Deionized Water Nanofluid Utilization at Different Concentrations on Heat Pipe Performance: An Experimental Study, Appl. Therm. Eng., vol. 148, pp. 632-640, 2019. DOI: 10.1016/j.applthermaleng.2018.11.024.

  13. International Energy Outlook I, International Energy Outlook, accessed October 10, 2019, from http://www.worldenergyout-look.org/media/weowebsite/2008-1994/weo_2007.pdf, 2007.

  14. Khanlari, A., Aydin, D.Y., Sozen, A., Guru, M., and Variyenli, H.I., Investigation of the Influences of Kaolin-Deionized Water Nanofluid on the Thermal Behavior of Concentric Type Heat Exchanger, Heat Mass Transf., vol. 56, pp. 1-10, 2019a. DOI: 10.1007/s00231-019-02764-1.

  15. Khanlari, A., Sozen, A., and Variyenli, H.I., Simulation and Experimental Analysis of Heat Transfer Characteristics in the Plate Type Heat Exchangers Using TiO2/Water Nanofluid, Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 4, pp. 1343-1362, 2019b. DOI: 10.1108/HFF-05-2018-0191.

  16. Khanlari, A., Sozen, A., Variyenli, H.I., and Guru, M., Comparison between Heat Transfer Characteristics of TiO2/Deionized Water and Kaolin/Deionized Water Nanofluids in the Plate Heat Exchanger, Heat Transf. Res., vol. 50, no. 5, pp. 435-450, 2018. DOI: 10.1615/HeatTransRes.2018026288.

  17. Kline, S.J. and McClintock, F.A., Describing Uncertainties in Single-Sample Experiments, Mech. Eng., vol. 75, pp. 3-8, 1953.

  18. Kumar, D.S. and Elansezhian, R., ZnO Nanorefrigerant in R152a Refrigeration System for Energy Conservation and Green Environment, Front. Mech. Eng., vol. 9, no. 1, pp. 75-80, 2014. DOI: 10.1007/s11465-014-0285-y.

  19. Maheshwary, P.B., Handa C.C., and Nemade, K.R., Effect of Shape on Thermophysical and Heat Transfer Properties of ZnO/R-134a Nanorefrigerant, Mater. Today: Proc, vol. 5, no.1, pp. 1635-1639, 2018. DOI: 10.1016/j.matpr.2017.11.257.

  20. Ohunakin, O.S., Adelekan, D.S., Babarinde, T.O., Leramo, R.O., Abam, F.I., and Diarra, C.D., Experimental Investigation of TiO2-, SiO2-, and Al2O3-Lubricants for a Domestic Refrigerator System Using LPG as Working Fluid, Appl. Therm. Eng., vol. 127, pp. 1469-1477, 2017. DOI: 10.1016/j.applthermaleng.2017.08.153.

  21. Ozdemir, M.B. and Ergun, M.E., Experimental and Numerical Investigations of Thermal Performance of Al2O3/Water Nano-fluid for a Combi Boiler with Double Heat Exchangers, Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 4, pp. 1300-1321, 2019. DOI: 10.1108/HFF-05-2018-0189.

  22. Padmanabhan, V.M.V. and Palanisamy, S., The Use of TiO2 Nanoparticles to Reduce Refrigerator Irreversibility, Energy Convers. Manage., vol. 59, pp. 122-132, 2012. DOI: 10.1016/j.enconman.2012.03.002.

  23. Patterson, M.G., What Is Energy Efficiency?: Concepts, Indicators and Methodological Issues, Energy Policy, vol. 24, no. 5, pp. 377-390, 1996.

  24. Peng, H., Ding, G., and Hu, H., Effect of Surfactant Additives on Nucleate Pool Boiling Heat Transfer of Refrigerant-Based Nanofluid, Exp. Therm. Fluid Sci., vol. 35, no. 6, pp. 960-970, 2011. DOI: 10.1016/j.expthermflusci.2011.01.016.

  25. Sabareesh, R.K., Gobinath, N., Sajith, V. Dasa, S., and Sobhan, C.B., Application of TiO2 Nanoparticles as a Lubricant-Additive for Vapor Compression Refrigeration Systems-An Experimental Investigation, Int. J. Refrig., vol. 35, no. 7, pp. 1989-1996, 2012. DOI: 10.1016/j.ijrefrig.2012.07.002.

  26. Sanukrishna, S.S. and Prakash, M.J., Experimental Studies on Thermal and Rheological Behavior of TiO2-PAG Nanolubricant for Refrigeration System, Int. J. Refrig., vol. 86, pp. 356-372, 2018.

  27. Sharif, M.Z., Azmi, W.H., Mamat, R., and Shaifuld, A.I.M., Mechanism for Improvement in Refrigeration System Performance by Using Nanorefrigerants and Nanolubricants-A Review, Int. Commun. Heat Mass Transf., vol. 92, pp. 56-63, 2018. DOI: 10.1016/j.icheatmasstransfer.2018.02.012.

  28. Sozen, A., Qiftfi, E., Kejel, S., Guru, M., Variyenli, H.I., and Karakaya, U., Usage of a Diatomite-Containing Nanofluid as the Working Fluid in a Wickless Loop Heat Pipe: Experimental and Numerical Study, Heat Transf. Res., vol. 49, no. 17, pp. 1721-1744, 2018a. DOI: 10.1615/HeatTransRes.2018025111.

  29. Sozen, A., Guru, M., Khanlari, A., and Qiftfi, E., Experimental and Numerical Study on Enhancement of Heat Transfer Characteristics of a Heat Pipe Utilizing Aqueous Clinoptilolite Nanofluid, Appl. Therm. Eng., vol. 160, 114001, 2019a.

  30. Sozen, A., Guru, M., Menlik, T., Karakaya, U., and Qiftfi, E., Experimental Comparison of Triton X-100 and Sodium Dodecyl Benzene Sulfonate Surfactants on Thermal Performance of TiO2-Deionized Water Nanofluid in a Thermosiphon, Exp. Heat Transf., vol. 31, no. 5, pp. 450-469, 2018b. DOI: 10.1080/08916152.2018.1445673.

  31. Sozen, A., Khanlari, A., and Qiftfi, E., Experimental and Numerical Investigation of Nanofluid Usage in a Plate Heat Exchanger for Performance Improvement, Int. J. Renew. Energy Devel., vol. 8, no. 1, pp. 27-32, 2019b. DOI: 10.14710/ijred.8.1.27-32.

  32. Sozen, A., Khanlari, A., and Qiftfi, E., Heat Transfer Enhancement of Plate Heat Exchanger Utilizing Kaolin-Including Working Fluid, Proc. Inst. Mech. Eng., Part A: J. Power Energy, vol. 233, no. 5, pp. 626-634, 2019c. DOI: 10.1177/0957650919832445.

  33. Sozen, A., Menlik, T., Guru, M., Irmak, A.F., Kilif, F., and Aktas, M., Utilization of Fly Ash Nanofluids in Two-Phase Closed Thermosyphon for Enhancing Heat Transfer, Exp. Heat Transf., vol. 29, no. 3, pp. 337-354, 2016. DOI: 10.1080/08916152.2014.976724.

  34. Sozen, A., Ozturk, A., Ozalp, M., and Qiftfi, E., Influences of Alumina and Fly Ash Nanofluid Usage on the Performance of Recuperator Including Heat Pipe Bundle, Int. J. Environ. Sci. Technol., vol. 16, no. 9, pp. 5095-5100, 2019d. DOI: 10.1007/s13762-018-1832-6.

  35. Thamaphat, K., Limsuwan, P., and Ngotawornchai, B., Phase Characterization of TiO2 Powder by XRD and TEM, Kasetsart J. (Nat. Sci.), vol. 42, no. 5, pp. 357-361, 2008.

  36. Yusof, T.M., Arshad, A.M., Suziyana, M.D., Chui, L.G., and Basrawi, M.F., Experimental Study of a Domestic Refrigerator with POE-Al2O3 Nanolubricant, Int. J. Automotive Mech. Eng., vol. 11, pp. 2243-2252, 2015. DOI: 10.15282/ijame.11.2015.7.0188.

  37. Yuzer, S.N., Investigation of the Relationship between Lubricating Oil and Coolant in Refrigerator Compressors, Masters, ITU, 2005.

  38. Zawawi, N.N.M., Azmi, W.H., Redhwan, A.A.M., Sharif, M.Z., and Sharma, K.V., Thermo-Physical Properties of Al2O3-SiO2/PAG Composite Nanolubricant for Refrigeration System, Int. J. Refrig., vol. 80, pp. 1-10, 2017. DOI: 10.1016/j.ijrefrig.2017.04.024.

  39. Zhang, J.Y., Boyd, I.W., O'sullivan, B.J., Hurley, P.K., Kelly, P.V., and Senateur, J.P., Nanocrystalline TiO2 Films Studied by Optical, XRD and FTIR Spectroscopy, J. Non-Crystalline Solids, vol. 303, no. 1, pp. 134-138, 2002. DOI: 10.1016/S0022-3093(02)00973-0.

对本文的引用
  1. Akkaya Mustafa, Menlik Tayfun, Sözen Adnan, Gürü Metin, The Effects of Triton X-100 and Tween 80 Surfactants on the Thermal Performance of a Nano-Lubricant: An Experimental Study, International Journal of Precision Engineering and Manufacturing-Green Technology, 8, 3, 2021. Crossref

  2. Riedesel Shawn, Kaur Rajpreet, Bakshi Mandeep Singh, Distinguishing Nanoparticle–Nanoparticle Interactions between Gold and Silver Nanoparticles Controlled by Gemini Surfactants: Stability of Nanocolloids, The Journal of Physical Chemistry C, 125, 9, 2021. Crossref

  3. AKKAYA Mustafa, ZnO-MoO3 Nanopartikülleri ve PAG Yağı ile Hazırlanan Nanoyağlayıcıların Termal Analizi, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2021. Crossref

  4. Babat Rand Ahmed Adeeb, Martin Kerim, Çiftçi Erdem, Sözen Adnan, Experimental study on the utilization of magnetic nanofluids in an air-to-air heat pipe heat exchanger, Chemical Engineering Communications, 2021. Crossref

  5. Ozturk Teoman, Sarilmaz Adem, Akin Seckin, Dursun Huseyin, Ozel Faruk, Akman Erdi, Quinary Nanocrystal‐Based Passivation Strategy for High Efficiency and Stable Perovskite Photovoltaics, Solar RRL, 6, 1, 2022. Crossref

  6. Hashemi Seyed Masoud, Maleki Ali, Ahmadi Mohammad Hossein, The effect of some metal oxide nanocomposites on the pulsating heat pipe performance, Energy Reports, 7, 2021. Crossref

  7. Akkaya Mustafa, Yurtdaş Semih, The impacts of synthesized Ag doped ZnO nano-materials on the energy efficiency of the refrigeration system, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022. Crossref

  8. Akman Erdi, Karapinar Hacer Sibel, Electrochemically stable, cost-effective and facile produced selenium@activated carbon composite counter electrodes for dye-sensitized solar cells, Solar Energy, 234, 2022. Crossref

  9. Akkaya Mustafa, Usage of Graphene-Doped Tin Oxide Hybrid Nanocomposites in Compressor and Electromagnetic Modeling for Single-Phase Compressor Motor, Arabian Journal for Science and Engineering, 2022. Crossref

  10. Akkaya Mustafa, An effective strategy for decreased energy consumption by using Fe3O4 + CeO2 @ POE in Cooling system, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 236, 5, 2022. Crossref

  11. Akkaya Mustafa, Sarilmaz Adem , Menlik Tayfun, Ozel Faruk , ENERGY ANALYSIS OF SiC-Si3N4 @ POE AND SiC-Si3N4 @ R134a BASED COOLING SYSTEMS , Heat Transfer Research, 54, 2, 2023. Crossref

1231 文章浏览量 13 文章下载 统计数据
1231 文章浏览量 13 下载次数 11 Crossref 引用次数 Google
Scholar
引用次数

相似内容的文章:

EXPERIMENTAL STUDY ON TIO2 NANOPARTICLES IN VAPOUR COMPRESSION REFRIGERATION SYSTEM WORKING WITH LPG Second Thermal and Fluids Engineering Conference, Vol.14, 2017, issue
Sunday Olayinka Oyedepo, D. S. Adelekan, Taiwo O. Babarinde, O. S. Ohunakin, R. O. Leramo
EXPERIMENTAL STUDY OF LPG AND R134a REFRIGERANTS IN VAPOR COMPRESSION REFRIGERATION International Journal of Energy for a Clean Environment, Vol.16, 2015, issue 1-4
S. A. Aasa, Sunday Olayinka Oyedepo, D. S. Adelekan, Taiwo O. Babarinde, O. S. Ohunakin
COMPARATIVE STUDY OF ENERGY PERFORMANCE OF R600a/TiO2 AND R600a/MWCNT NANOLUBRICANTS IN A VAPOR COMPRESSION REFRIGERATION SYSTEM International Journal of Energy for a Clean Environment, Vol.21, 2020, issue 4
F. M. Ekundayo, S. A. Akinlabi, Taiwo O. Babarinde, D. M. Madyira
COMPARATIVE ANALYSIS OF DIFFERENT REFRIGERANTS USED IN A HIGH-TEMPERATURE VAPOR-COMPRESSION HEAT PUMP International Journal of Energy for a Clean Environment, Vol.18, 2017, issue 2
Victor A. Mazur, V. V. Karnaukh, Alexey B. Birukov, K. A. Rzhesik
ENERGY, ECONOMIC, ENVIRONMENTAL AND HEAT TRANSFER ANALYSIS OF A SOLAR FLAT-PLATE COLLECTOR WITH pH-TREATED Fe3O4/WATER NANOFLUID International Journal of Energy for a Clean Environment, Vol.22, 2021, issue 6
Zafar Said, Manoj K. Singh, Lingala Syam Sundar, V. Punnaiah, António C. M. Sousa, Solomon Mesfin

将发表的论文

Effective Efficiency Analysis of Artificially Roughed Solar Air Heater MAN AZAD Energy, Exergy-Emission Performance Investigation of Heat Exchanger with Turbulators Inserts and Ternary Hybrid Nanofluid Ranjeet Rai, Vikash Kumar, Rashmi Rekha Sahoo Temperature correction method of radiation thermometer based on the nonlinear model fitted from spectral emissivity measurements of Ni-based alloy Yanfen Xu, kaihua zhang, Kun Yu, Yufang Liu Analysis of Thermal Performance in a Two-phase Thermosyphon loop based on Flow Visualization and an Image Processing Technique Avinash Jacob Balihar, Arnab Karmakar, Avinash Kumar, Smriti Minj, P L John Sangso Investigation of the Effect of Dead State Temperature on the Performance of Boron Added Fuels and Different Fuels Used in an Internal Combustion Engine. Irfan UÇKAN, Ahmet Yakın, Rasim Behçet PREDICTION OF PARAMETERS OF BOILER SUPERHEATER BASED ON TRANSFER LEARNING METHOD Shuiguang Tong, Qi Yang, Zheming Tong, Haidan Wang, Xin Chen A temperature pre-rectifier with continuous heat storage and release for waste heat recovery from periodic flue gas Hengyu Qu, Binfan Jiang, Xiangjun Liu, Dehong Xia Study on the Influence of Multi-Frequency Noise on the Combustion Characteristics of Pool Fires in Ship Engine Rooms Zhilin Yuan, Liang Wang, Jiasheng Cao, Yunfeng Yan, Jiaqi Dong, Bingxia Liu, Shuaijun Wang Experimental study on two-phase nonlinear oscillation behavior of miniaturized gravitational heat pipe Yu Fawen, Chaoyang Zhang, Tong Li, Yuhang Zhang, Wentao Zheng Flow boiling heat transfer Coefficient used for the Design of the Evaporator of a Refrigeration Machine using CO2 as Working Fluid Nadim KAROUNE, Rabah GOMRI Analyzing The Heat and Flow Characteristics In Spray Cooling By Using An Optimized Rectangular Finned Heat Sink Altug Karabey, Kenan Yakut Thermal management of lithium-ion battery packs by using corrugated channels with nano-enhanced cooling Fatih Selimefendigil, Aykut Can, Hakan Öztop Convective heat transfer inside a rotating helical pipe filled with saturated porous media Krishan Sharma, Deepu P, Subrata Kumar Preparation method and thermal performance of a new ultra-thin flexible flat plate heat pipe Xuancong Zhang, Jinwang Li, Qi Chen Influence of Temperature Gradients and Fluid Vibrations on the Thermocapillary Droplet Behavior in a Rotating Cylinder Yousuf Alhendal The Effect of Corrugation on Heat Transfer and Pressure Drop in a Solar Air Heater: A Numerical Investigation Aneeq Raheem, Waseem Siddique, Shoaib A.Warraich, Khalid Waheed, Inam Ul Haq, Muhammad Tabish Raheem, Muhammad Muneeb Yaseen Investigation of the Effect of Using Different Nanofluids on the Performance of the Organic Rankine Cycle Meltem ARISU, Tayfun MENLİK Entropy generation and heat transfer performance of cylindrical tube heat exchanger with perforated conical rings: a numerical study Anitha Sakthivel, Tiju Thomas Molecular dynamics study of the thermal transport properties in the graphene/C3N multilayer in-plane heterostructures Junjie Zhu, Jifen Wang, Xinyi Liu, Kuan Zhao Flow boiling critical heat flux in a small tube for FC-72 Yuki Otsuki, Makoto Shibahara, Qiusheng Liu, Sutopo Fitri STUDY OF FORCED ACOUSTIC OSCILLATIONS INFLUENCE ON METHANE OXIDATION PROCESS IN OXYGEN-CONTAINING FLOW OF HYDROGEN COMBUSTION PRODUCTS Anastasiya Krikunova, Konstantin Arefyev, Ilya Grishin, Maxim Abramov, Vladislav Ligostaev, Evgeniy Slivinskii, Vitaliy Krivets Examining the Synergistic Use of East-West Reflector and Coal Cinder in Trapezoidal Solar Pond through Energy Analysis VINOTH KUMAR J, AMARKARTHIK ARUNACHALAM
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集 订购及政策 Begell House 联系我们 Language English 中文 Русский Português German French Spain