图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 1.199 5年影响因子: 1.155 SJR: 0.267 SNIP: 0.503 CiteScore™: 1.4

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

卷:
卷 51, 2020 卷 50, 2019 卷 49, 2018 卷 48, 2017 卷 47, 2016 卷 46, 2015 卷 45, 2014 卷 44, 2013 卷 43, 2012 卷 42, 2011 卷 41, 2010 卷 40, 2009 卷 39, 2008 卷 38, 2007 卷 37, 2006 卷 36, 2005 卷 35, 2004 卷 34, 2003 卷 33, 2002 卷 32, 2001 卷 31, 2000 卷 30, 1999 卷 29, 1998 卷 28, 1997

传热学

DOI: 10.1615/HeatTransRes.2018018737
pages 1513-1530

SIMULATION OF NATURAL CONVECTION OF AN Al2O3/WATER NANOFLUID IN A COMPLEX WAVY-WALL CAVITY USING THE LATTICE BOLTZMANN METHOD

Alireza Shahriari
Department of Mechanical Engineering, University of Zabol, Zabol, Iran; Department of Mechanical Engineering, Birjand University, Birjand, Iran
Ebrahim Jahanshahi Javaran
Department of Energy, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
Mohammad Rahnama
Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran

ABSTRACT

In this paper, two-dimensional natural convection of an Al2O3/water nanofluid is presented using the lattice Boltz-mann method. Natural convection occurs in a cavity with two complex-wavy vertical walls, as hot and cold surfaces while the top and bottom ones are insulated. The effect of pertinent parameters such as the volume fraction of nanoparticles, Rayleigh numbers, and complex-wavy-wall geometry parameters on flow and heat transfer fields are investigated in detail. Results show an increase in the Nusselt number with volume fraction for Rayleigh numbers in the range 103 < Re < 106. Moreover, the effect of wavy-surface geometry parameters such as the wavelength and amplitude ratio, on heat transfer is studied, and an optimum value for heat transfer rate is obtained.

REFERENCES

  1. Abadshapoori, M.H. and Saidi, M., Lattice Boltzmann Simulation of TiO2-Water Nanofluid in a Curved Boundary Domain at High Rayleigh Numbers, Comput. Fluids, vol. 168, pp. 159-169, 2018.

  2. Abu-Nada, E., Masoud, Z., Oztop, H.F., and Campo, A., Effect of Nanofluid Variable Properties on Natural Convection in Enclosures, Int. J. Therm. Sci., vol. 49, no. 3, pp. 479-491, 2010.

  3. Abu-Nada, E. and Oztop, H.F., Numerical Analysis of Al2O3/Water Nanofluids Natural Convection in a Wavy Walled Cavity, Numer. Heat Transf., Part A: Appl., vol. 59, no. 5, pp. 403-419, 2011.

  4. Aidun, C.K. and Clausen, J.R., Lattice-Boltzmann Method for Complex Flows, Annu. Rev. FluidMech., vol. 42, pp. 439-472, 2010.

  5. Bianco, V., Marchitto, A., Scarpa, F., and Tagliafico, L.A., Computational Fluid Dynamics Modeling of Developing Forced Laminar Convection Flow of Al2O3-Water Nanofluid in a Two-Dimensional Rectangular Section Channel, J. Enhanced Heat Transf., vol. 25, no. 4, pp. 387-398, 2018.

  6. Brinkman, H., The Viscosity of Concentrated Suspensions and Solutions, J. Chem. Phys., vol. 20, no. 4, pp. 571-571, 1952.

  7. Bruggeman, V.D., Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen. I. Dielektrizitatskon- stanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, Annalen der Physik, vol. 416, no. 7, pp. 636-664, 1935.

  8. Chen, S. and Doolen, G.D., Lattice Boltzmann Method for Fluid Flows, Annu. Rev. Fluid Mech., vol. 30, no. 1, pp. 329-364, 1998.

  9. Cho, C.-C. and Chen, C.-L., Natural Convection Heat Transfer Performance in Complex-Wavy-Wall Enclosed Cavity Filled with Nanofluid, Int. J. Therm. Sci., vol. 60, pp. 255-263, 2012.

  10. Cho, C.C., Chen, C.L., and Chen, C.K., Natural Convection Heat Transfer Performance in Complex-Wavy-Wall Enclosed Cavity Filled With Nanofluid, Int. J. Therm. Sci, vol. 60, pp. 255-263, 2012.

  11. Chol, S. and Estman, J., Enhancing Thermal Conductivity of Fluids with Nanoparticles, ASME-Publications-Fed, vol. 231, pp. 99-106, 1995.

  12. De Vahl Davis, G., Natural Convection of Air in a Square Cavity, a Benchmark Numerical Solution, Int. J. Numer. Meth. Fluids, vol. 3, no. 3, pp. 249-264, 1983.

  13. Einstein, A., Eine neue Bestimmung der Molekuldimensionen, Annalen der Physik, vol. 324, no. 2, pp. 289-306, 1906.

  14. Filippova, O. and Hanel, D., Boundary-Fitting and Local Grid Refinement for Lattice-BGK Models, Int. J. Modern Phys. C, vol. 9, no. 8, pp. 1271-1279, 1998.

  15. Gao, D. and Chen, Z., Lattice Boltzmann Simulation of Natural Convection Dominated Melting in a Rectangular Cavity Filled with Porous Media, Int. J. Therm. Sci., vol. 50, no. 4, pp. 493-501, 2011.

  16. Guo, Z., Zheng, C., and Shi, B., An Extrapolation Method for Boundary Conditions in Lattice Boltzmann Method, Phys. Fluids, vol. 14, no. 6, pp. 2007-2010, 2002.

  17. Hamilton, R.L. and Crosser, O., Thermal Conductivity of Heterogeneous Two-Component Systems, Ind. Eng. Chem. Fundam., vol. 1, no. 3, pp. 187-191, 1962.

  18. He, Y., Qi, C., Hu, Y., Qin, B., Li, F., and Ding, Y., Lattice Boltzmann Simulation of Alumina-Water Nanofluid in a Square Cavity, Nanoscale Res. Lett., vol. 6, no. 1, p. 184, 2011.

  19. Ismael, M.A., Armaghani, T., and Chamkha, A.J., Mixed Convection and Entropy Generation in a Lid Driven Cavity Filled with a Hybrid Nanofluid and Heated by a Triangular Solid, Heat Transf. Res., vol. 49, no. 17, pp. 1645-1665, 2018.

  20. Kao, P.-H. and Yang, R.-J., Simulating Oscillatory Flows in Rayleigh-Benard Convection Using the Lattice Boltzmann Method, Int. J. Heat Mass Transf., vol. 50, no. 17, pp. 3315-3328, 2007.

  21. Karabay, H., Mixed Convection Flow Al2O3-Water Nanofluid in a Two-Sided Lid Driven Cavity with Wavy Walls, Heat Transf. Res., vol. 49, no. 2, pp. 91-102, 2018.

  22. Karatas, H. and Derbentli, T., Natural Convection in Rectangular Cavities with One Active Vertical Wall, Int. J. Heat Mass Transf., vol. 105, pp. 305-315, 2017.

  23. Khanafer, K., Vafai, K., and Lightstone, M., Buoyancy-Driven Heat Transfer Enhancement in a Two-Dimensional Enclosure Utilizing Nanofluids, Int. J. Heat Mass Transf., vol. 46, no. 19. pp. 3639-3653, 2003.

  24. Kim, J., Kang, Y.T., and Choi, C.K., Analysis of Convective Instability and Heat Transfer Characteristics of Nanofluids, Phys. Fluids, vol. 16, no. 7, pp. 2395-2401, 2004.

  25. Krane, R.J. and Jessee, J., Some Detailed Field Measurements for a Natural Convection Flow in a Vertical Square Enclosure, in 1st ASME-JSME Thermal Engineering Joint Conf, vol. 1, no. 1, pp. 323-329, 1983.

  26. Li, H. and Tong, S., Natural Convective Heat Transfer in the Inclined Rectangular Cavities with Low Width-to-Height Ratios, Int. J. Heat Mass Transf., vol. 93, pp. 398-407, 2016.

  27. Mansour, M. and Bakier, M., Free Convection Heat Transfer in Complex-Wavy-Wall Enclosed Cavity Filled with Nanofluid, Int. Commun. Heat Mass Transf., vol. 44, pp. 108-115, 2013.

  28. Maxwell, J.C., A Treatise on Electricity End Magnetism, Dover, U.K.: Clarendon Press, 1873.

  29. Mei, R., Luo, L.-S., and Shyy, W., An Accurate Curved Boundary Treatmenf in the Lattice Boltzmann Method, J. Comput. Phys., vol. 155, no. 2, pp. 307-330, 1999.

  30. Ostrach, S., Natural Convection in Enclosures, J. Heat Transf., vol. 110, no. 4b, pp. 1175-1190, 1988.

  31. Oztop, H.F. and Abu-Nada, E., Numerical Study of Natural Convection in Partially Heated Rectangular Enclosure Filled with Nanofluids, Int. J. Heat Fluid Flow, vol. 29, no. 4, pp. 1326-1336, 2008.

  32. Nandakrishnan, S.L., Deepu, M., and Shine, S.R., Numerical Investigation of Heat-Transfer Enhancement in a Dimpled Diverging Microchannel with Al2O3-Water Nanofluid, J. Enhanced Heat Transf., vol. 25, nos. 4-5, pp. 347-365, 2018.

  33. Putra, N., Roetzel, W., and Das, S.K., Natural Convection of Nano-Fluids, Heat Mass Transf., vol. 39, nos. 8-9, pp. 775-784, 2003.

  34. Shahriari, A., Jahantigh, N., and Rakani, F., Assessment of Particle-Size and Temperature Effect Nanofluid on Heat Transfer Adopting Lattice Boltzmann Model, Int. J. Eng., vol. 31, no. 10, pp. 1616-1627, 2018.

  35. Sheikholeslami, M., Gorji-Bandpy, M., Seyyedi, S., Ganji, D., Rokni, HB . , and Soleimani, S., Application of LBM in Simulation of Natural Convection in a Nanofluid Filled Square Cavity with Curve Boundaries, Powder Technol., vol. 247, pp. 87-94, 2013.

  36. Singh, A.K., Roy, S., Basak, T., and Momoniat, E., Role of Entropy Generation on Thermal Management during Natural Convection in a Tilted Square Cavity with Isothermal and Non-Isothermal Hot Walls, Numer. Heat Transf., Part A: Appl., vol. 66, no. 11, pp. 1243-1267, 2014.

  37. Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford, U.K.: University Press, 2001.

  38. Vadri, S.S., Prakash, K.A., and Pattamatta, A., Numerical Investigation of Natural-Convection Heat Transfer Characteristics of Al2O3-Water Nanofluid Flow Through Porous Media Embedded in a Square Cavity, Heat Transf. Res., vol. 49, no. 8, pp. 719-745, 2018.

  39. Wan, D.C., Patnaik, B.S.V., and Wei, G.W., A New Benchmark Solution for the Buoyancy-Driven Cavity by Discrete Singular Convolution, Numer. Heat Transf., Part B, vol. 40, no. 1, pp. 199-228, 2001.

  40. Wen, D. and Ding, Y. , Formulation of Nanofluids for Natural Convective Heat Transfer Applications, Int. J. Heat Fluid Flow, vol. 26, no. 6, pp. 855-864, 2005.

  41. Xuan, Y. and Roetzel, W., Conceptions for Heat Transfer Correlation of Nanofluids, Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701-3707, 2000.


Articles with similar content:

Effectiveness and Economic for Using Ag-Nanoparticles in Porous Media inside Enclosure with Present Heat Generation and Magnetic Field under Natural Convection Conditions
International Journal of Fluid Mechanics Research, Vol.42, 2015, issue 6
Ali Meerali Jasim Al-Zamily
MAGNETO CONVECTION HEAT TRANSFER IN A POROUS SQUARE CAVITY USING LOCAL THERMAL NON-EQUILIBRIUM APPROACH
Special Topics & Reviews in Porous Media: An International Journal, Vol.10, 2019, issue 2
N. Nithyadevi, Muthu Rajarathinam
INFLUENCES OF ADIABATIC BLOCK, NANOFLUID AND MAGNETIC FIELD ON THERMAL ENERGY TRANSPORT IN CAVITY
Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017), Vol.0, 2017, issue
Nirmal Kumar Manna, Nirmalendu Biswas
NUMERICAL STUDY OF NATURAL CONVECTION HEAT TRANSFER PERFORMANCE IN AN INCLINED CAVITY WITH COMPLEX-WAVY-WALL: NANOFLUID AND RANDOM TEMPERATURE
Computational Thermal Sciences: An International Journal, Vol.7, 2015, issue 1
Hicham Salhi, Djamel Haddad, Mohamed Si-Ameur
NUMERICAL STUDY ON THE EFFECT OF MAGNETIC FIELD IN A POROUS ENCLOSURE USING NANOFLUID WITH MID-HORIZONTAL MOVING LID: BRINKMAN-FORCHHEIMER EXTENDED DARCY MODEL
Journal of Porous Media, Vol.21, 2018, issue 5
N. Nithyadevi, A. Shamadhani Begum