图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
传热学
影响因子: 0.404 5年影响因子: 0.8 SJR: 0.264 SNIP: 0.504 CiteScore™: 0.88

ISSN 打印: 1064-2285
ISSN 在线: 2162-6561

传热学

DOI: 10.1615/HeatTransRes.v41.i8.70
pages 889-900

Experimental Study of Heat Transfer from Impinging Jet with Upstream and Downstream Crossflow

Daniel Thibault
Laboratoire d'Etudes Thermiques - UMR CNRS 6608 ENSMA - University of Poitiers, BP 40109 - 86961 Chasseneuil Cedex France
Matthieu Fenot
Institut Pprime, Departement Fluides, Thermique et Combustion. Laboratoire d'Etudes Thermiques - UMR CNRS 6608 ENSMA - University of Poitiers, BP 40109 - 86961 Chasseneuil Cedex France
Gildas Lalizel
Institut Pprime, Departement Fluides, Thermique et Combustion. Laboratoire d'Etudes Thermiques - UMR CNRS 6608 ENSMA - University of Poitiers, BP 40109 - 86961 Chasseneuil Cedex France
Eva Dorignac
Institut Pprime, Departement Fluides, Thermique et Combustion. Axe COST. ENSMA - Universite de Poitiers - BP 40109. 1, avenue Clement ADER. 86961 Futuroscope CHASSENEUIL cedex

ABSTRACT

Numerous geometrical and flow parameters can affect the heat transfer in the impinging jet cooling methods. In this study, a configuration close to a real case of vane cooling was adopted. It consists of a main crossflow flowing into an injection hole of diameter D perpendicular to the main flow through a thin plate of thickness t equal to D and the Reynolds number of the injection is fixed to 23,000. A secondary crossflow with a Reynolds number of 1000 is fixed between the exit of the jet and the impingement region, to simulate the flow stream evacuation from the leading edge to the trailing edge of the vane. This geometry is very different from a jet issued from a long pipe as described in many previous studies. The flow field of the jet in the present case has a three-dimensional behavior due to its complex geometry. High levels of turbulence at the exit of the nozzle are observed with Particle Image Velocimetry measurements. The fields of the reference temperature and convective heat transfer coefficient on the impingement surface are calculated from infrared thermography measurements. The results show a significant drop of the heat transfer in such geometry.


Articles with similar content:

EXPERIMENTAL STUDY OF HEAT TRANSFER FROM IMPINGING JET WITH UPSTREAM AND DOWNSTREAM CROSSFLOW
ICHMT DIGITAL LIBRARY ONLINE, Vol.0, 2009, issue
Eva Dorignac, Daniel Thibault, Matthieu Fenot, Gildas Lalizel
HEAT TRANSFER IN ANNULAR DUCTS WITH FREELY DECAYING SWIRL FLOW
International Heat Transfer Conference 9, Vol.5, 1990, issue
B.L. Button, K. Jambunathan , R.J. Edwards
NUMERICAL SIMULATION OF TWO HEATED PARALLEL PLANE AIR JETS
ICHMT DIGITAL LIBRARY ONLINE, Vol.13, 2008, issue
Terfous Abdelali, Bentarzi Fatiha, Amina Mataoui
IMPINGING JET: EXPERIMENTAL ANALYSIS OF FLOW FIELD AND HEAT TRANSFER FOR ASSESSMENT OF TURBULENCE MODELS
International Heat Transfer Conference 13, Vol.0, 2006, issue
Andre Giovannini, N. S. Kim
FLUID FLOW AND HEAT TRANSFER CHARACTERISTICS OF A SWIRL JET IMPINGING ON A FLAT PLATE
International Heat Transfer Conference 13, Vol.0, 2006, issue
Juliana Kuhlmann Abrantes, Luis Fernando A. Azevedo