图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
多孔介质期刊
影响因子: 1.752 5年影响因子: 1.487 SJR: 0.43 SNIP: 0.762 CiteScore™: 2.3

ISSN 打印: 1091-028X
ISSN 在线: 1934-0508

卷:
卷 23, 2020 卷 22, 2019 卷 21, 2018 卷 20, 2017 卷 19, 2016 卷 18, 2015 卷 17, 2014 卷 16, 2013 卷 15, 2012 卷 14, 2011 卷 13, 2010 卷 12, 2009 卷 11, 2008 卷 10, 2007 卷 9, 2006 卷 8, 2005 卷 7, 2004 卷 6, 2003 卷 5, 2002 卷 4, 2001 卷 3, 2000 卷 2, 1999 卷 1, 1998

多孔介质期刊

DOI: 10.1615/JPorMedia.v2.i3.20
pages 231-249

Nonsimilar Combined Convection Flow over a Vertical Surface Embedded in a Variable Porosity Medium

Ali J. Chamkha
Mechanical Engineering Department, Prince Sultan Endowment for Energy and Environment, Prince Mohammad Bin Fahd University, Al-Khobar 31952, Saudi Arabia; RAK Research and Innovation Center, American University of Ras Al Khaimah, P.O. Box 10021, Ras Al Khaimah, United Arab Emirates
Khalil Khanafer
Mechanical Engineering Department, Australian College of Kuwait, Safat, 13015

ABSTRACT

The problem of combined forced-free convection flow over an isothermal vertical surface embedded in a variable porosity, porous medium with heat generation or absorption is formulated. The formulation includes the porous medium inertia and boundary effects, variable porosity, and thermal dispersion. The developed governing equations are transformed into nonsimilarity equations that have the advantage of producing their solution at the leading edge of the surface. These equations are then solved numerically subject to appropriate boundary and matching conditions by an implicit, finite-difference method. Comparisons with previously reported numerical and experimental work on the special case where no porous medium is present are performed and found to be in excellent agreement. A parametric study of the physical parameters involved in the problem such as the particle diameter-based Reynolds number, the Grashof number, the flow-based Reynolds number, and the heat generation or absorption coefficient is conducted. The obtained results are illustrated graphically to show interesting features of the solution. It is found that flow separation exists for the case of opposing flow condition and that the presence of thermal dispersion is essential for this type of problem.


Articles with similar content:

Double-Diffusive Convective Flow of a Micropolar Fluid Over a Vertical Plate Embedded in a Porous Medium with a Chemical Reaction
International Journal of Fluid Mechanics Research, Vol.31, 2004, issue 6
Ali F. Al-Mudhaf, Ali J. Chamkha, Jasem Al-Yatama
NATURAL CONVECTIVE HEAT TRANSFER FLOW OF A NON-NEWTONIAN SECOND-GRADE FLUID PAST AN ISOTHERMAL SPHERE
Computational Thermal Sciences: An International Journal, Vol.6, 2014, issue 5
V. Ramachandra Prasad, Bandaru Mallikarjuna, R. Bhuvanavijaya, O. Anwar Bég
THERMOPHORESIS AND HEAT GENERATION/ABSORPTION EFFECTS ON MAGNETOHYDRODYNAMIC FLOW OF JEFFREY FLUID OVER POROUS OSCILLATORY STRETCHING SURFACE WITH CONVECTIVE BOUNDARY CONDITIONS
Journal of Porous Media, Vol.21, 2018, issue 6
Nasir Ali, Sami Ullah Khan
HEAT GENERATION/ABSORPTION AND RADIATION EFFECTS ON HYDROMAGNETIC STAGNATION POINT FLOW OF NANOFLUIDS TOWARD A HEATED POROUS STRETCHING/SHRINKING SHEET WITH SUCTION/INJECTION
Journal of Porous Media, Vol.23, 2020, issue 1
K. M. Kanika, Santosh Chaudhary
NONLINEAR RADIATION EFFECT ON CASSON NANOFLUID PAST A PLATE IMMERSED IN DARCY–BRINKMAN POROUS MEDIUM WITH BINARY CHEMICAL REACTION AND ACTIVATION ENERGY
International Journal of Fluid Mechanics Research, Vol.44, 2017, issue 6
Ali F. Al-Mudhaf, Aurang Zaib, M. M. Rashidi, Ali J. Chamkha