图书馆订阅: Guest
Begell Digital Portal Begell 数字图书馆 电子图书 期刊 参考文献及会议录 研究收集
多孔介质期刊
影响因子: 1.061 5年影响因子: 1.151 SJR: 0.504 SNIP: 0.671 CiteScore™: 1.58

ISSN 打印: 1091-028X
ISSN 在线: 1934-0508

多孔介质期刊

DOI: 10.1615/JPorMedia.v18.i6.50
pages 613-628

NATURAL CONVECTION ABOVE A HORIZONTAL PLATE IN A NANOFLUID-SATURATED POROUS MEDIUM WITH OR WITHOUT A MAGNETIC FIELD

Kaustav Pradhan
Indian Institute of Technology Kharagpur
Abhijit Guha
Mechanical Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, Pin 721302, India

ABSTRACT

A generalized similarity theory is developed for natural convection over a horizontal plate in a nanofluid-saturated porous medium in the presence of a vertical magnetic field. The paper highlights three important aspects: role of the wall boundary condition of the nanoparticles, the magnetic field, and the porous medium. Two different boundary conditions are imposed on the nanoparticle volume fraction, one where the nanoparticle volume fraction at the wall is actively controlled and another where the nanoparticle flux is set equal to zero at the surface. It is shown that a similarity theory can be formulated for the case of a uniform magnetic field when natural convection takes place in a Darcian porous medium (which is in contrast to magnetohydrodynamic natural convection in a normal fluid for which similarity solutions exist only for a specific power law variation of the magnetic field along the plate). It is observed that the applied magnetic field reduces the velocity in the boundary layer. Consequently, the temperature of the nanofluid and the nanoparticle volume fraction near the plate is greater than that in the absence of a magnetic field. The Nusselt number and Sherwood number for a nanofluid are found to decrease with an increase in the value of the magnetic parameter. The effect of the nanofluid parameters Nr, Nb, and Nt on the velocity, temperature and nanoparticle volume fraction within the boundary layer is also investigated. The effect of the nanofluid parameters on the Nusselt and Sherwood numbers is complicated and is illustrated through tables. It is shown that the wall boundary condition of the nanoparticles has a profound effect on the computed values of Nusselt and Sherwood numbers.


Articles with similar content:

RADIATION EFFECT ON MHD FLOW OF A TANGENT HYPERBOLIC NANOFLUID OVER AN INCLINED EXPONENTIALLY STRETCHING SHEET
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 3
Nampelly Saidulu, A. Venakata Lakshmi, T. Gangaiah
Thermo-diffusion effects on MHD flow towards an exponentially Stretching Sheet in a nanofluid using FEM
Second Thermal and Fluids Engineering Conference, Vol.11, 2017, issue
Rama Bhargava, Rangoli Goyal, Mania Goyal
Unsteady Free Convective Viscoelastic Boundary Layer Flow Past a Vertical Porous Plate with Internal Heat Generation/Absorption
International Journal of Fluid Mechanics Research, Vol.33, 2006, issue 6
Ioan Pop, Sujit Kumar Khan
HALL EFFECTS ON MHD SQUEEZING FLOW OF A WATER-BASED NANOFLUID BETWEEN TWO PARALLEL DISKS
Journal of Porous Media, Vol.22, 2019, issue 2
M. Veera Krishna, Ali J. Chamkha
NUMERICAL STUDY OF MHD BOUNDARY LAYER FLOW OF A VISCOELASTIC AND DISSIPATIVE FLUID PAST A POROUS PLATE IN THE PRESENCE OF THERMAL RADIATION
International Journal of Fluid Mechanics Research, Vol.46, 2019, issue 1
Konda Jayarami Reddy, G. Sivaiah, M. C Raju, P. Chandra Reddy